Inhibitor development in mild/moderate hemophilia A

Corien Eckhardt, Alice van Velzen, Marjolein Peters, Jan Astermark, Johannes Oldenburg, Cathelijne Peerlinck, Charles Hay, Pieter Willem Kamphuisen, Elena Santagostino, Johanna van der Bom, and Karin Fijnvandraat, for the INSIGHT investigators

Seventh WFH Global Forum, Montreal, 22 September 2011
WFH requires the following disclosures be made at each presentation:

<table>
<thead>
<tr>
<th>Conflict</th>
<th>Disclosure - if conflict of interest exists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Support</td>
<td>INSIGHT study is financially supported by unrestricted grants from the Dutch Health Council (ZonMw) and CSL Behring.</td>
</tr>
<tr>
<td>Director, Officer, Employee</td>
<td>No relevant conflicts of interest to declare.</td>
</tr>
<tr>
<td>Shareholder</td>
<td>No relevant conflicts of interest to declare.</td>
</tr>
<tr>
<td>Honoraria</td>
<td>No relevant conflicts of interest to declare.</td>
</tr>
<tr>
<td>Advisory Committee</td>
<td>No relevant conflicts of interest to declare.</td>
</tr>
<tr>
<td>Consultant</td>
<td>No relevant conflicts of interest to declare.</td>
</tr>
</tbody>
</table>
Impact of inhibitor development in MHA

- Severe complication1
 - Aggravates bleeding pattern into severe phenotype (FVIII:C <2%)
 - Increases complications and mortality

- No standardized inhibitor eradication therapy for mild/moderate patients

- More than 30\% of all new inhibitors occur in MHA2

\begin{itemize}
 \item Problem is substantial
 \item Neglected area of research
\end{itemize}

1 Hay et al, Thromb Haemost 1998; 79: 762–6
2 Plug et al, Blood 2004; 104: 3494-3500
• 11 countries
• 34 HTCs
• 2700 patients
INSIGHT study design

1. **Cohort study**
 Data of 2700 consecutive MHA patients treated with FVIII concentrate (1980-2010).

 First results presented at ISTH:
 - Genetic risk factors for inhibitor development.
 - Inhibitor development and mortality.
 - Cumulative incidence of viral infections and related mortality.
 - Relation F8 genotype and FVIII plasma level.

2. **Nested case-control study**
 Clinical data and DNA of 100 inhibitor patients, 400 controls matched for CED.

 First results expected in 2012:
 - Environmental & genetic risk factors for inhibitor development.

3. **TRIM: Treatment of inhibitors in MHA**
 Additional clinical data of 100 inhibitor patients.

 First results presented at ISTH:
 - Treatment during inhibitor and inhibitor eradication therapy in MHA.
Main findings:

- **F8 gene mutations** at codons 531 – 663 and 1761 – 2333 are associated with a fivefold increased risk for inhibitor development in a large unselected cohort of MHA patients.

- **Cysteine replacement** and a **positive family history** of inhibitors are other independent risk factors for inhibitor development in MHA patients.
Mortality in mild/moderate patients

Main findings:

• Inhibitor development seems to be associated with a **2 times higher risk of all-cause mortality** as compared to non-inhibitor patients.

• Major causes of death in MHA patients with inhibitors are malignancy (25%) and bleeding (19%).

• Most inhibitor patients died between year **2000 – 2007**.
Main findings:

- Most MHA inhibitor patients (74%) need treatment for bleeding or surgery during their inhibitor episode.

- In 28% of the inhibitor patients inhibitor eradication treatment is initiated by Immune Tolerance Induction or immunosuppressive treatment. This is successful in 68%.
Focus of future inhibitor research in MHA

1. **Prediction**
 - Environmental risk factors: e.g. role of intensive treatment and surgery
 - Genetic risk factors: e.g. genetic variations in immunoregulatory genes
 - Development of clinical prediction tool to estimate inhibitor risk in individual patients.

2. **Prevention**
 - Development of preventive strategies (Prophylaxis? Immunosuppressive medication? Bypassing agents? Other..)

3. **Treatment**
 - Standardized treatment guidelines for prevention/treatment of bleeding and inhibitor eradication therapy in MHA.
Acknowledgements

Steering Board
K. Fijnvandraat * Amsterdam
M. Peters * Amsterdam
P.W. Kamphuisen * Amsterdam
J. van der Bom * Leiden
J. Astermark * Malmo * Sweden
C. Hay * Manchester * UK
J. Oldenburg * Bonn * Germany
K. Peerlinck * Leuven * Belgium
E. Santagostino * Milano * Italy

PhD students
A. Van Velzen
C. Eckhardt

Research Assistants
N. Streefkerk, J. Loomans, A. van Eijkelenburg,
B. van Tienoven, C. Kruijt, E. Krouwel, A. Janssen

Investigators (The Netherlands)
F. Leebeek & A. de Goede * Rotterdam
K. Meijer * Groningen
P. Brons & B. Laros- van Gorkum * Nijmegen
M. Nijziel & N. Dors * Eindhoven
F. Smiers * Leiden
K. Hamulyak * Maastricht
E. Mauser & K. Fischer * Utrecht

Investigators (Europe and Australia)
C. Hermans * Brussel * Belgium
T. Yee * London * UK
R. Liesner * London * UK
D. Hart * London * UK
S. Rangarajan * London * UK
R. Keenan * Liverpool * UK
A. Maakiperna * Helsinki * Finland
H. Platokouki * Athens * Greece
N. Haya & A. Moret * Valencia * Spain
V. Jiminez-Yuste * Madrid * Spain
M. Morfini * Florence * Italy
M. Mazzucconi * Rome * Italy
G. Castaman * Vicenza * Italy
P. Schinco * Turin * Italy
A. Tagliaferri * Parma * Italy
R. Klamroth & M. Orlovic * Berlin * Germany
B. Siegmund * Munster * Germany
W. Kreuz & C. Ettinghausen * Frankfurt * Germany
C. Male & I. Pabinger * Vienna * Austria
P. Petrini & M. Holmstrom * Stockholm * Sweden
S. McRae * Adelaide * Australia