Participants

J. Michael Soucie, MPH, PhD
Associate Director for Science
Division of Blood Disorders
Centers for Disease Control and Prevention
Atlanta, Georgia USA

Carol K. Kasper, MD
Emerita Professor of Medicine
University of Southern California
Los Angeles, California USA

Corien Eckhardt, MD
Department of Pediatric Hematology
Academic Medical Center
Emma Children's Hospital
Amsterdam, the Netherlands

Elena Santagostino, MD, PhD
A. Bianchi Bonomi Hemophilia and Thrombosis Center
Maggiore Hospital Foundation and University of Milan
Milan, Italy
Hemophilia Inhibitor Research Study

- **Pilot**
 - Determine the feasibility for national inhibitor surveillance
 - Centralized inhibitor testing
 - Centralized genotyping
 - Prospective collection of product exposure data

- **Phase II**
 - ARM 1 (continuation of pilot)
 - Increase the database on product exposure data
 - Develop nationwide mutation database - CHAMP
 - ARM II
 - Increase genetic data on patients with a history of an inhibitor
 - CHAMP
 - Immune response gene testing
Study Progress

- 17 Hemophilia treatment centers
- Patient Enrollment
 - ARM 1: 1167 patients
 - ARM 2: 11 patients
- 2,679 inhibitor tests performed
- Databases
 - Product Exposure
 - ~100,000 infusion logs collected
 - Genotyping
 - 137 patients with a history of an inhibitor
 - 1041 patients with no inhibitor
Genotyping Results

- **F8 Gene**
 - 248 unique mutations were found.
 - 95 (38%) were not reported in HAMSTeRS or publications.
 - Mutations were identified in 96% of patients.

- **F9 Gene**
 - 62 unique mutations were found.
 - 11 (18%) were not reported in the Haemophilia B Mutation Database.
 - Mutations were identified in 99% of patients.
Race/Ethnicity Differences in Inhibitor Frequency in Severe Hemophilia A

<table>
<thead>
<tr>
<th></th>
<th>White Non-Hispanic</th>
<th>Black Non-Hispanic</th>
<th>Hispanic</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>321</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>Inhibitors</td>
<td>63 19.6%</td>
<td>13 37.1%</td>
<td>15 46.9%</td>
</tr>
</tbody>
</table>

$P=0.0003$
Race/Ethnicity Differences in Inhibitor Frequency

- Increased inhibitor frequencies in Black and Hispanic patients do not appear to be caused by differences in $F8$ mutations present.

- In White patients, $F8$ haplotype mismatch with treatment products is not a factor in inhibitor formation.

- In Black and Hispanic patients, preliminary data suggest that product mismatch does not play a role in higher inhibitor frequencies.

- Study of the immune response may reveal the source of this difference.
Inhibitor Method Validation

- A modified Nijmegen-Bethesda assay was adopted
- A heating step was added to remove infused and endogenous factor VIII
- Effectiveness was confirmed by absence of FVIII activity and antigen in heated specimens
- CV of positive control was 10.3%; negative was 9.8%
- Split sample comparison showed that shipment on cold packs was equivalent to frozen specimens
- Cut-offs were established by comparing results on patients with negative and positive history of inhibitor
Change in Inhibitor Titer after Heating Plasma to 56°C for 30 min & Centrifuging

• 1 of 159 negative inhibitor history and 5 of 30 positive inhibitor history patients went from negative to positive after heating.
• Correlation of results on heated and unheated inhibitor positive specimens was 0.94 (p=0.0001)

a. Negative History

b. Positive History
FVIII Inhibitor Titers

a. Enrollment n=674

b. All Specimens n=1317

Threshold for a positive inhibitor was set at ≥0.5 NBU for factor VIII
Threshold for a positive inhibitor was set at >0.2 NBU for factor IX
The U.S. inhibitor study conducted by CDC has genotyped over 1,000 hemophilia patients.

To aid in analysis and reporting, the CDC Hemophilia A Mutation Project (CHAMP) was established.

First activity of CHAMP was a comprehensive mutation list.

Mutations were collected from:
- HAMSTeRS
- From publications identified by systematic literature review

Each mutation was reviewed and uniquely identified using:
- HGVS nomenclature for cDNA and predicted protein changes
- Traditional nomenclature based on the mature processed protein
Mutations Listed in CHAMP

- Missense: 1091
- Frameshift: 469
- Nonsense: 251
- Splice Site: 154
- Large Str Change: 116
- Small Str Change: 46
- Promoter: 4
- Synonymous: 11
CHAMP Mutation List

- Simple look-up table to identify reported mutations and to assign unique identifiers for accurate reporting
- Excel database format which can be downloaded from the CDC website and searched
- Available at http://www.cdc.gov/hemophiliamutations
- Currently includes 2,142 mutations and will be updated quarterly from submissions and literature reports
- Two additional databases are planned
 - Mutations reported in the U.S.
 - A population-based database of mutation and inhibitor data from defined geographic regions worldwide
Study Findings

- Centralized inhibitor testing feasible
- Prospective data collection of product exposure and genotyping cost-prohibitive on a national level
- Pilot study recommendations for national inhibitor surveillance
 - Routine monitoring of all hemophilia patients for inhibitors in a centralized laboratory
 - Case surveillance for incident cases
 - Retrospective data collected on product exposure & surgical/outpatient procedures from 1 year prior to detection
National Inhibitor Surveillance

- Currently there is no national surveillance for inhibitors in the U.S.

- Reporting of inhibitors by clinicians to the FDA MedWatch system appears to be inconsistent

- Monitoring of inhibitors should focus on:
 - Trends in occurrence over time
 - Demographic and geographic sub-populations
 - Clusters or “outbreaks” of inhibitors
UDC Inhibitor Case Surveillance

- For each new inhibitor case identified as part of the UDC centralized inhibitor testing
 - Sites would collect retrospective data on product exposure & surgical/outpatient procedures from one year prior to the positive titer – as part of the blood safety program

- Many more incident cases could be identified by monitoring all UDC participants

- Genotyping of incident cases important but funding may be an issue
Advantages

- The data collection is more focused and requires less time-intensive work at the HTCs
- The risk factors and their interactions can potentially be determined in a shorter time period
- This surveillance system would collect data comparable to the European Union hemophilia adverse events reporting system
 - Could facilitate future international data comparison on inhibitors – not currently possible
 - Could potentially allow for future international collaboration on inhibitor research sub-studies
Acknowledgements

Study Principle Investigators

- John Barrett, MD
- Paula Bockenstedt, MD
- Doreen Brettler, MD
- Miguel Escobar, MD
- M. Elaine Eyster, MD
- Joan Gill, MD
- Christine Kempton, MD
- Christine Knoll, MD
- Cindy Leissinger, MD
- Steven Lentz, MD
- Marilyn Manco-Johnson, MD
- Anne Neff, MD
- Amy Shapiro, MD
- Michael Tarantino, MD
- Brian Wicklund, MD
- Hassan Yaish, MD

Funding support from Pfizer and Baxter Healthcare through the CDC Foundation