
PRACTICAL EDUCATION ON BLEEDING DISORDERS

Knowledge for All

Medical educational webinar series on global topics surrounding bleeding disorders.

TUESDAY, OCTOBER 12, 2021, 8-10 A.M. EDT

English with simultaneous translation into Arabic, French, Russian and Spanish.

WELCOME

GLENN PIERCE, MD PhD
WFH VICE PRESIDENT, MEDICAL

QUESTIONS AND TRANSLATION FOR COMPUTERS OR TABLETS

End

Please submit your questions in the Q&A box

More

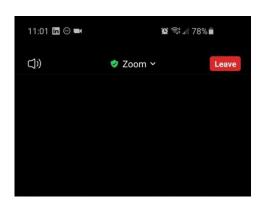
Por favor seleccione su idioma de preferencia ahora

Veuillez sélectionner votre langue de préférence maintenant

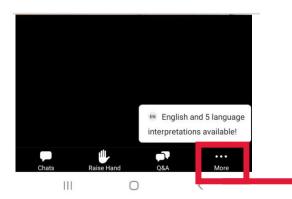
الرجاء اختيار لغتك المفضلة الآن

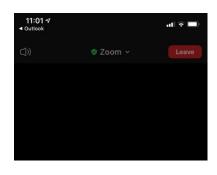
Interpretation

Пожалуйста выберите язык

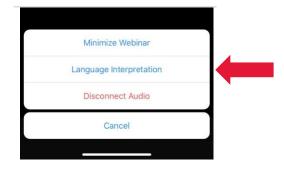


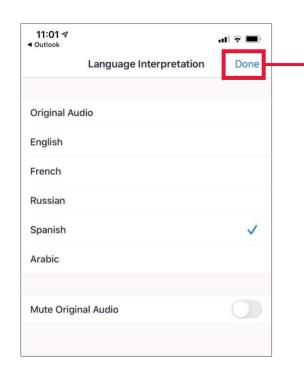
Option to mute the original English audio




QUESTIONS AND TRANSLATION

FOR MOBILE PHONES





Click on "Done" to select your language

Click on the 3 dots to select the interpretation channel

AGENDA

- 1. Opening & welcoming remarks
- 2. MSK Comorbidities
 - Medical
 - Rehabilitation
 - Surgery
- 3. Q&A
- 4. Cardiovascular comorbidities
 - Hypertension & renal disease
 - Atrial fibrillation & anticoagulants
 - Ischemic heart disease
- 5. Q&A
- 6. Closing remarks

SPEAKERS

Gianluigi Pasta, MD
Chair of WFH MSK Committee
Italy

Paul McLaughlin, MD
Clinical Specialist Physiotherapist
U.K.

Adolfo Llinás Volpe, MD Medical Director, Fundación Santa Fe de Bogotá Colombia

SPEAKERS

Robert Klamroth , MD
Head of the Department and Director of
Comprehensive Care
Germany

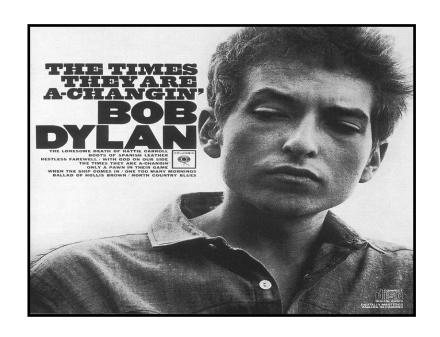
Roger Schutgens, MD
Van Creveldkliniek University
Medical Center
Utrecht, The Netherlands

Gerard Dolan , MD

Consultant Haematologist and
Director, St Thomas' Haemophilia
Comprehensive Care centre
U.K.

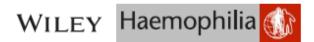
MSK Comorbidities – Osteoporosis, pain management, associated medical conditions and surgery

Gianluigi Pasta, MD


Chair of WFH MSK Committee
Fondazione IRCCS Policlinico San Matteo Pavia
Italy

Speaker disclosures

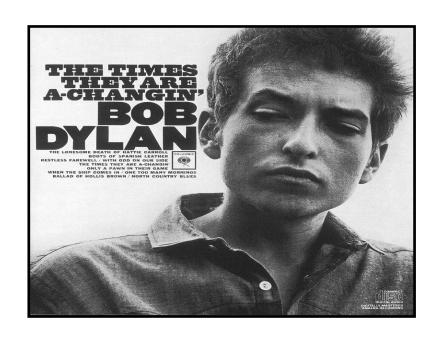
Shareholder	
Grant / Research Support	
Consultant	Bayer, Novonordisk, Octapharma, Pfizer, Roche, Sobi, Takeda
Employee	
Paid Instructor	
Speaker bureau	
Other	

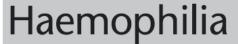

- Associated medical conditions and surgery
- Pain management
- Osteoporosis

Accepted: 11 June 2017

DOI: 10.1111/hae.13308

ORIGINAL ARTICLE


Clinical haemophilia


Ageing successfully with haemophilia: A multidisciplinary programme

```
E. Boccalandro<sup>1</sup> | M. E. Mancuso<sup>1</sup> | S. Riva<sup>1,2</sup> | D. M. Pisaniello<sup>1</sup> | F. Ronchetti<sup>3</sup> |
```

E. Santagostino¹ | F. Peyvandi¹ | L. P. Solimeno⁴ | P. M. Mannucci¹ | G. Pasta⁴

- Associated medical conditions and surgery
- Pain management
- Osteoporosis

The Official Journal of the World Federation of Hemophilia, European Association for Haemophilia and Allied Disorders and the Hemostasis & Thrombosis Research Society

Haemophilia (2016), 22, e275-e285

DOI: 10.1111/hae.12885

ORIGINAL ARTICLE Musculoskeletal

Meta-analysis: outcomes of total knee arthroplasty in the haemophilia population

M. F. MOORE, * † P. TOBASE; and D. D. ALLEN†

*Physical Medicine and Rehabilitation, The Johns Hopkins Hospital Baltimore, MD; †Graduate Program in Physical Therapy, University of California San Francisco/ San Francisco State University; and ‡University of California, San Francisco Medical Center, San Francisco, CA, USA

[0.80–2.21]). A 31.5% complication rate was calculated with 106 reported in 336 TKAs. Conclusions: TKA is an effective procedure for improving ROM and decreasing functional deficits resulting from haemophilic arthropathy. Knee score data shows TKA improves overall function. This study guides clinicians regarding outcome expectations post-TKA in PWH.

Infected joint replacements in HIV-positive patients with haemophilia

J. L. Hicks, W. J. Ribbans, B. Buzzard, S. S. Kelley, L. Toft, G. Torri, J. D. Wiedel, J. York

From Northampton General Hospital NHS Trust, England

J Bone Joint Surg [Br] 2001;83-B:1050-4. Received 6 April 2000; Accepted after revision 30 March 2001

bih research paper

Factors influencing the long-term outcome of primary total knee replacement in haemophiliacs: a review of 116 procedures at a single institution

	Infected TKR $(n = 9)$	Uninfected TKR (n = 107)	Crude HR (95% CI)	Adjusted HR* (95% CI)
Age at surgery				
≤39 years (%)	6 (64)	54 (50)	1 (ref)	1 (ref)
>39 years (%)	3 (33)	53 (50)	0.5 (0.1-2.1)	1.1 (0.2-6.1)
Presence of inhibitors (%)	3 (33)	4 (4)	9.0 (2.2-36.3)	4.7 (0.3-67.2)
Human immunodeficiency virus infection (%)	3 (33)	39 (36)	0.8 (0.2–3.2)	0.3 (0.03–2.8)
Primary surgeon other than LPS (%)	3 (33)	7 (6)	5.0 (1.2-20.2)	9.8 (1.0-95.3)
Cementless implant (%) Continuous infusion (%)	6 (67) 4 (44)	20 (19) 8 (7)	5·7 (1·4–23·1) 7·3 (1·9–27·1)	3·7 (0·8–17·7) 2·2 (0·2–22·8)

^{*}Each variable was adjusted for all the others.

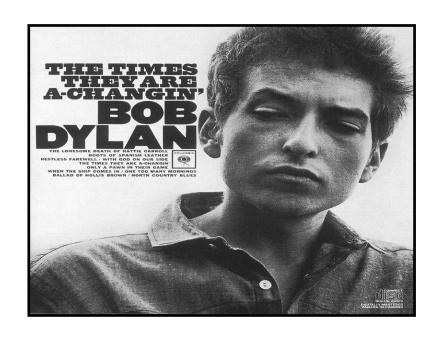
■ KNEE

The preoperative management of Hepatitis C may improve the outcome after total knee arthroplasty

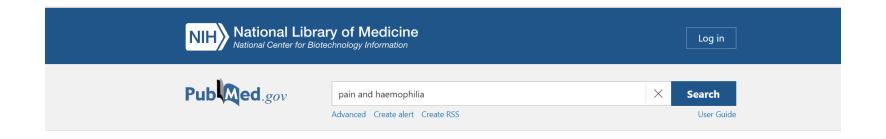
Correspondence should be sent to R. Schwarzkopf; email: ran.schwarzkopf@nyumc.org

©2019 The British Editorial Society of Bone & Joint Surgery doi:10.1302/0301-620X.101B6. BJJ-2018-0723.R3 \$2.00

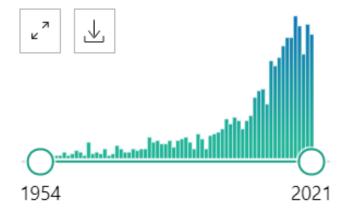
Bone Joint J 2019;101-B:667-674.


Table VI. Postoperative surgical outcomes

Characteristic	Cured (64 patients; 70 knees)	Untreated (63 patients; 71 knees)	p-value
Infection, n (%)	3 (4.3)	11 (<i>15.5</i>)	0.03**
Deep infection	3 (4.3)	7 (9.9)	
Superficial infection	0 (0.0)	4 (5.6)	
Stiffness requiring MUA, n (%)	2 (2.8)	1 (1.4)	0.55*
Wound drainage, n (%)	0 (0.0)	2 (2.8)	0.16*
Intraoperative fracture, n (%)	0 (0.0)	0 (0.0)	N/A
Postoperative fracture, n (%)	0 (0.0)	0 (0.0)	N/A
Revision total knee arthroplasty, n (%)	1 (1.4)	9 (12.7)	< 0.01**
Infection	1 (1.4)	6 (8.5)	
Arthrofibrosis	0 (0.0)	1 (1.4)	
Improper component sizing	0 (0.0)	1 (1.4)	
Persistent wound drainage	0 (0.0)	1 (1.4)	
All surgical complications, n (%)	5 (7.1)	15 (<i>21.1</i>)	0.02**


^{*}Chi-squared test

MUA, manipulation under anaesthesia; N/A, not applicable


[‡]Statistically significant

- Associated medical conditions and surgery
- Pain management
- Osteoporosis

RESULTS BY YEAR

Contents lists available at ScienceDirect

Blood Reviews

Review

Improving assessment and management of pain in hemophilia: an Italian Delphi consensus statement[★]

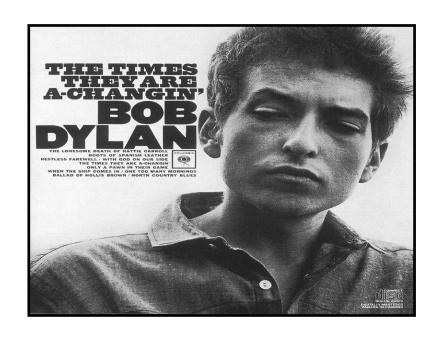
Cristina Santoro ^{a, 1}, Matteo Nicola Dario Di Minno ^{b, *, 1}, Antonio Corcione ^c, Giovanni Di Minno ^d, Marco Martinelli ^e, Maria Elisa Mancuso ^f, Benedetto Acone ^g, Angelo Claudio Molinari ^h, Emilio Valter Passeri ^e, Angiola Rocino ⁱ, Rita Carlotta Santoro ^j, Annarita Tagliaferri ^k, Consalvo Mattia ^l, On Behalf of the HAEMODOL Study Group

Improving assessment and management of pain in hemophilia: an Italian Delphi consensus statement[★]

Joint pain, both acute (caused by hemarthrosis) and chronic (caused by hemophilic arthropathy), is a major problem in PwH, including children and adolescents [12–19]. Up to 50% of adult PwH have chronically painful joints that cause disability and impair quality of life (QoL) [10,20], and in a multinational study, 89% of PwH experienced at least one pain exacerbation episode during a 4-week observation period [21]. Chronic and acute pain are frequently experienced concurrently, which causes unique challenges in the assessment and management of pain in PwH [12,22,23].

Appropriate pain assessment and effective management strategies are essential to improve the functionality and QoL of PwH [20,24,25].

Thus, there is an urgent need to improve and standardize both pain assessment and pain management in PwH [25]. To this end, the HAE-

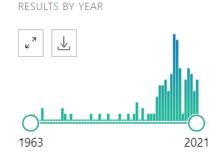


Multimodal management

- Sylent bleedings
- Chronic synovitis
- Chronic arthropathy

- Associated medical conditions and surgery
- Pain management
- Osteoporosis

Several original articles published after 1994 have suggested a relationship between osteoporosis.


Iorio A et al. Thromb Haemost. 2010

Type of change	Finding	Score
Osteoprosis	Absent	0
	Present	1
Enlargement of epiphysis	Absent	0
	Present	1
Irregularity of	Absent	0
subchondral bone	Surface partially affected	1
	Surface completely affected	2
Narrowing of joint space	Absent	0
~ , .	Joint space>1 mm	1
	Joint space<1 mm	2
Subchondral cyst	Absent	0
formation	1 cyst	1
	>1 cyst	2
Erosions at joint margins	Absent	0
ń.	Present	1
Incongruence between	Absent	0
joint surfaces	Slight	1
	Pronounced	2
Articular deformity	Absent	0
(angulation	Slight	1
and/or displacement of articulating bones)	Pronounced	2

Pettersson, Clin Orthop 1980

Bone mineral density in haemophilia patients

A meta-analysis

Alfonso Iorio¹; Gianluigi Fabbriciani^{2,3}; Maura Marcucci¹; Matteo Brozzetti⁴; Paolo Filipponi²

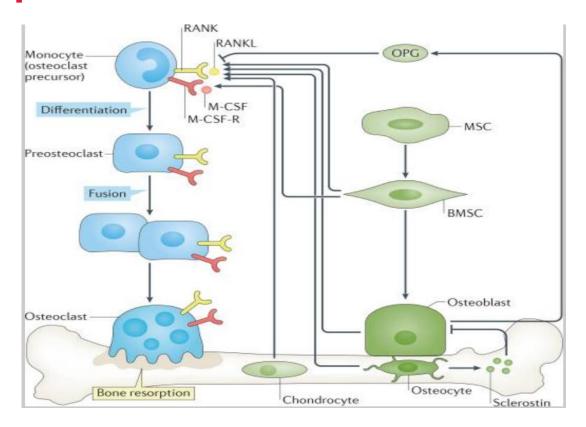
¹Hemophilia Centre – Internal and Vascular Medicine, Department of Internal Medicine, University of Perugia, Perugia, Italy; ²U.O. Medicina Generale, Azienda A.S.L. n. 1 dell'Umbria – Città di Castello and Umbertide, Italy; ³Institute of Internal Medicine, Angiology and Arteriosclerosis, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy; ⁴Ospedale di Norcia, Azienda A.S.L. n. 2 dell'Umbria, Perugia, Italy

BMI or with the percentage of HCV-infected patients. This meta-analysis confirms the association between severe haemophilia and low BMD.

Haemophilia and BMD

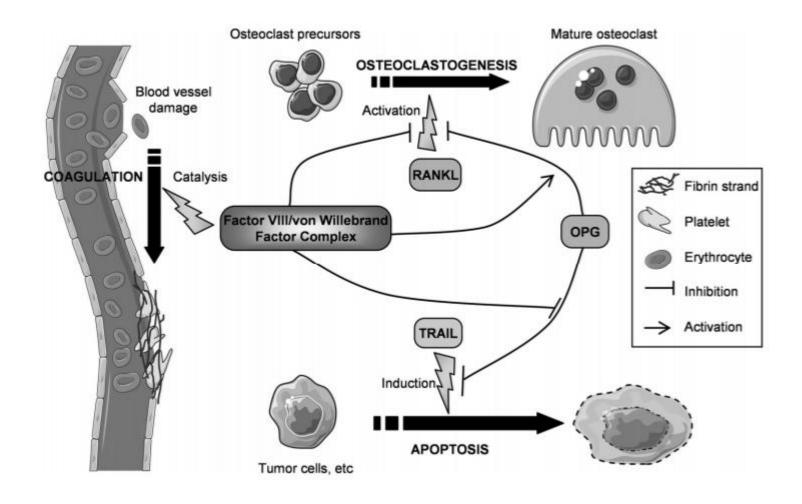
BMD in any given individual is determined by peak bone mass and the rate of bone loss. Peak bone mass is achieved around the mid-20s and is determined by several factors (genetic, nutrition, body weight, and weight-bearing physical activity)

Nelson DA et al., 2006



Osteoporosis is a skeletal disorder characterised by decreased bone strength and increased risk of fracture. Bone mineral density (BMD) is the most important factor in bone strength.

NIH consensus on Osteoporosis Prevention 2001


Haemophilia and bone turnover

M. Neale Weitzmann, Physiological and pathophysiological bone turnover — role of the immune system, Malkiet Kaur, Osteoblast-n-Osteoclast: Making Headway to Osteoporosis Treatment

Haemophilia and bone turnover

SUMMARY POINTS			
Bone mineral density is a poor predictor of an			
individual's fracture risk			

BMJ, 2008

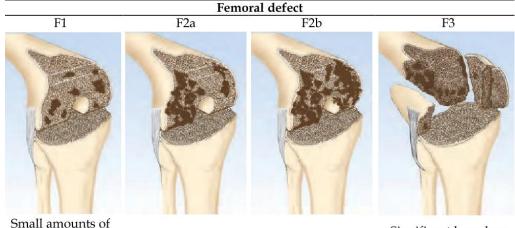
Surrogate endpoints

Musculoskeletal

Received: 7 June 2018 | Revised: 1 August 2018 | Accepted: 26 August 2018

DOI: 10.1111/hae.13611

ORIGINAL ARTICLE


WILEY Haemophilia

Usefulness of bone microarchitectural and geometric DXAderived parameters in haemophilic patients

Fabio Massimo Ulivieri¹ | Giulia Antonella Angela Rebagliati² | Luca Petruccio Piodi³ | Luigi Piero Solimeno⁴ | Gianluigi Pasta⁵ | Elena Boccalandro⁴ | Maria Rosaria Fasulo⁶ | Maria Elisa Mancuso⁷ | Elena Santagostino⁷

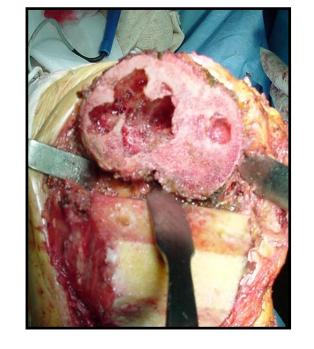
	TBS	TBS			BS		
Age (pts. number)	Mean	SD	Median	Mean	SD	Median	
≤30 (11)	1.42	0.07	1.41	3.20	1.32	3.06	
31-40 (20)	1.37	0.09	1.37	2.59	0.89	2.49	
41-50 (20)	1.38	0.39	1.31	3.02	1.46	2.56	
51-60 (11)	1.33	0.12	1.36	2.63	1.20	2.38	
61-70 (5)	1.21	0.11	1.22	1.83	0.39	1.85	
≥71 (3)	1.15	0.11	1.20	4.87	3.48	3.40	

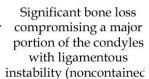
Damaged

unicondylar

structural bone

(noncontained)


bone loss not


compromising

component stability

(contained, minor

defects)

Bone mineral density in haemophilia patients

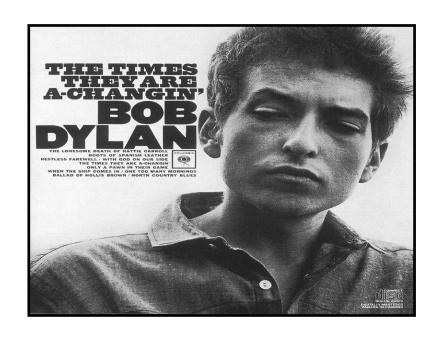
A meta-analysis

Alfonso Iorio¹; Gianluigi Fabbriciani^{2,3}; Maura Marcucci¹; Matteo Brozzetti⁴; Paolo Filipponi²

¹Hemophilia Centre – Internal and Vascular Medicine, Department of Internal Medicine, University of Perugia, Perugia, Italy; ²U.O. Medicina Generale, Azienda A.S.L. n. 1 dell'Umbria – Città di Castello and Umbertide, Italy; ³Institute of Internal Medicine, Angiology and Arteriosclerosis, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy; ⁴Ospedale di Norcia, Azienda A.S.L. n. 2 dell'Umbria, Perugia, Italy

Future studies should investigate fracture rates and interventions to prevent bone loss in persons with haemophilia

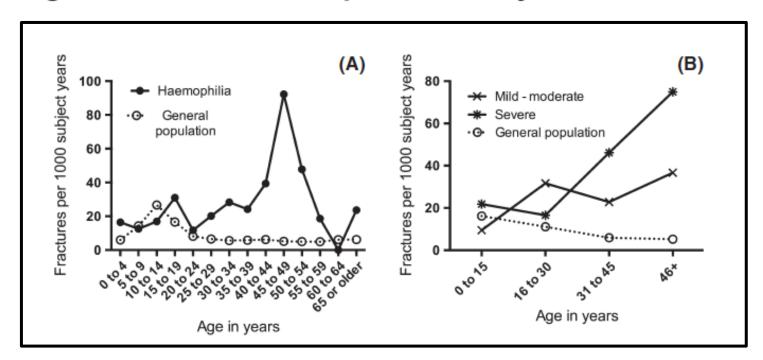
Haemophilia and osteoporosis



"It takes a child 1 year to acquire independent movement and 10 years to acquire indipendent mobility. An old person can lose both in a day".

Isaacs B, Challenge of Geriatric Medicine 1992

Haemophilia and osteoporosis


During the last decade, the approach to the patients with low bone mass has shifted from a simple BMD measurement to a more comprehensive evaluation of fracture risk.

Haemophilia and fracture rate

bjh correspondence

Increased fracture rates in people with haemophilia: a 10-year single institution retrospective analysis

Gay ND et al. 2015

Haemophilia and fracture rate

Epidemiology of fractures in patients with haemophilia

H. Caviglia a,b,*, M.E. Landro d, G. Galatro d, M. Candela b, D. Neme b

b Haemophilia Foundation, Soler 3485, (C1425BWE), Buenos Aires, Argentina¹

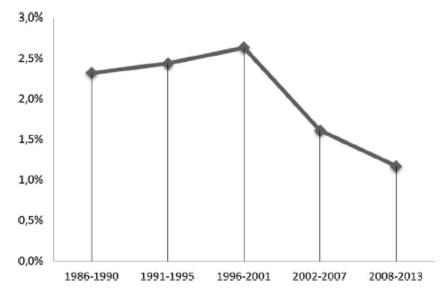


Fig. 2. Fracture incidence depending on the periods analysed. The maximum peak of the fracture incidence was in the period 1996–2001, in concordance with the availability of prophylaxis in our country. We compared the incidence of fracture in the population of PWH before (2.5%) and after (1.4%) 2001, the difference between the two groups was statically significant (p = 0.0003).

^a Department of Orthopaedic Surgery and Traumatology, Dr. Juan A. Fernández General Hospital, Cerviño 3356, 3rd floor, (C1 425APF), Buenos Aires, Argentina

Haemophilia and fracture rate

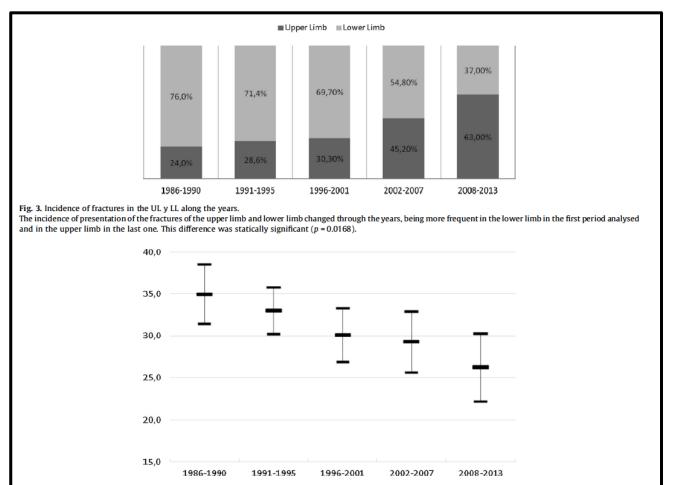
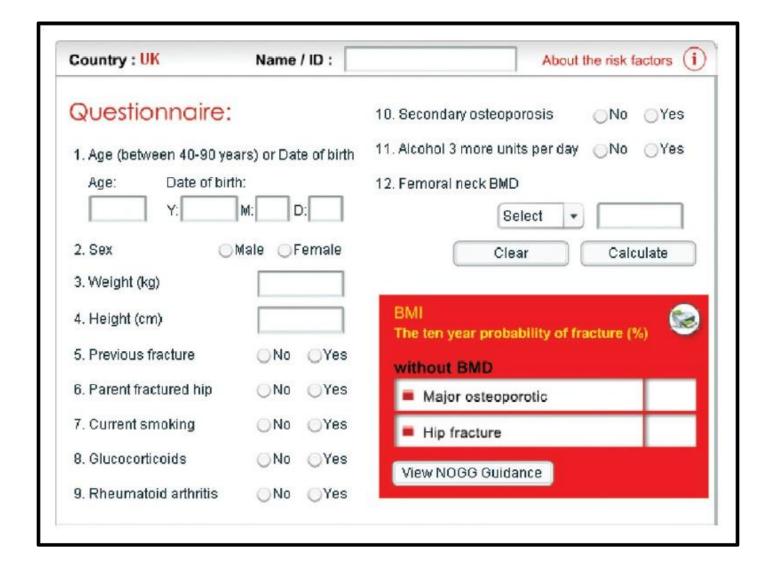


Fig. 4. Patient age when fractured according to the periods analysed.

The total mean age was 32 years old, ranging from 2 to 66 years old, as in the period 1986–1990 the average age was 35 (ranging 15–55 years old, SD 12.6), in 1991–1995 was 33 (ranging 12–57 years old, SD 11.6), 1996–2001 was 30 (ranging 2–59 years old, SD 14.3), 2002–2007 was 29 (ranging 7–55 years old, SD 15.8) and 2008–2013 was 26 (ranging 2–66 years old, SD 16.1). Difference was statistically significant between the first period and last period analysed, (*p* = 0.035).


Haemophilia and osteoporosis

Osteoporosis is a skeletal disorder characterised by decreased bone strength and *increased risk of fracture*.

NIH consensus on Osteoporosis Prevention 2001

Haemophilia A and B as a cause for secondary osteoporosis and increased fracture risk

Panagiotis Anagnostis^{a,b}, Spyridon Karras^a, Stavroula A. Paschou^a and Dimitrios G. Goulis^a

"It can be speculated that fracture risk in patients with haemophilia should be higher than in the general population."

current National Osteoporosis The Foundation Guide recommends treating patients with FRAX 10-year risk scores of > or = 3% for hip fracture or > or = 20% for major osteoporotic fracture, to reduce their fracture risk. Our patients FRAX 10 year risk scores are below those levels.

Agapidou A et al. 2016

Haemophilia and disease mongering

SUMMARY POINTS

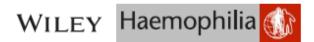
Falling, not osteoporosis, is the strongest single risk factor for fractures in elderly people

Bone mineral density is a poor predictor of an individual's fracture risk

BMJ, 2008

Joint deformity, muscle weakness and impaired proprioception. Such conditions may cause difficulty with mobility, pain, increased risk of falls.

Dolan G. Haemophilia 2010

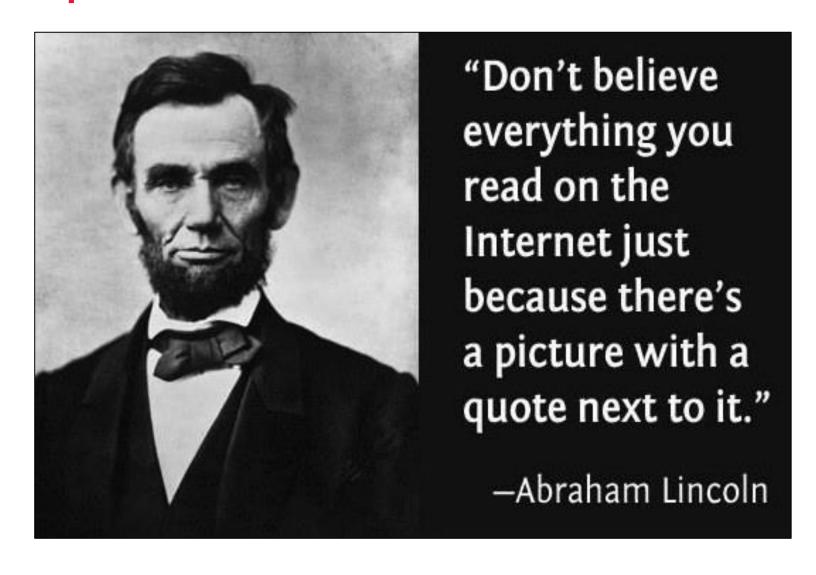

Haemophilia and MSK comorbidities

Accepted: 11 June 2017

DOI: 10.1111/hae.13308

ORIGINAL ARTICLE

Clinical haemophilia



Ageing successfully with haemophilia: A multidisciplinary programme

```
E. Boccalandro<sup>1</sup> | M. E. Mancuso<sup>1</sup> | S. Riva<sup>1,2</sup> | D. M. Pisaniello<sup>1</sup> | F. Ronchetti<sup>3</sup> |
```

E. Santagostino¹ | F. Peyvandi¹ | L. P. Solimeno⁴ | P. M. Mannucci¹ | G. Pasta⁴

Haemophilia and MSK comorbidities

THANK YOU gianluigipasta@yahoo.it

MSK Comorbidities – Rehabilitation

Paul McLaughlin MSc, MMACP

Specialist Physiotherapist in Haemophilia

The Royal Free Hospital, London, UK

Speaker disclosures

Shareholder	
Grant / Research Support	National Institute for Health Research (NIHR)
Consultant	
Employee	
Paid Instructor	
Speaker bureau	
Other	

Discussion points

- Case study
- Defining Rehabilitation
- What makes effective rehabilitation
- A bio-psycho-social view of rehabilitation
- Take home points

- 18 years old SHA
- History bilateral ankle and Rt knee bleeding
- Prophylaxis 2000iu/alt day

- 3/52 history Rt knee pain
- Locking and giving way
- No trauma/injury/recent bleed
- No change with extra FVIII
- ↓stairs and ↓ hills = ↑ pain



- No swelling
- Antalgic gait- protective
- Valgus Right knee
- Full ROM
- Tender anterolateral knee joint line
- Decrease quads strength
- HJHS Rt knee = 4
- HAL 76.5 (LeisSport, house, lowcom)
- Trouble playing golf his main hobby

- ?
- ?? Possible meniscal pathology
 - Unusual due to age
- Quads strength and fear an issue:
 - Knee support
 - Quads exercises
- More pain further visits in next few weeks
- X-Ray ...

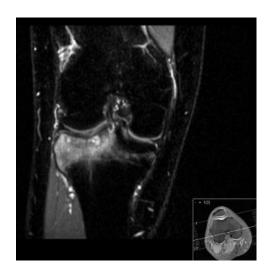
- MRI examination
- Well defined subchondral lesion
- Marked bone marrow oedema
- Overlying cartilage intact
- ACL, PCL, menisci intact
- 'AVASCULAR NECROSIS'

Medical input

- Cox-2 inhibitors and pain meds as needed
- Daily prophylaxis (1500iu) manage risk of bleed

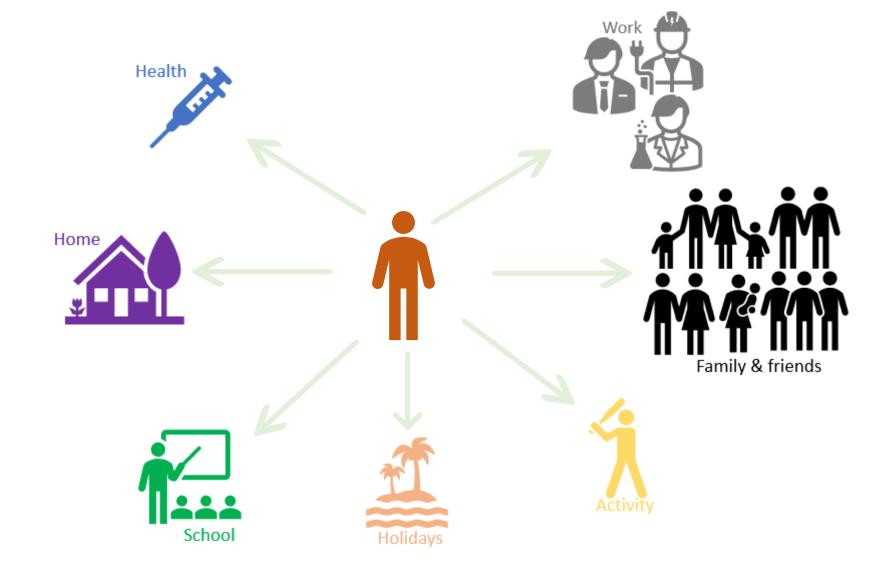
Physio rehab input

- Lockable knee brace
- Hydrotherapy quads, hams, glutes strength
- Gym based closed chain progressing to open chain – golf specific activity



• 6 months later - MRI:

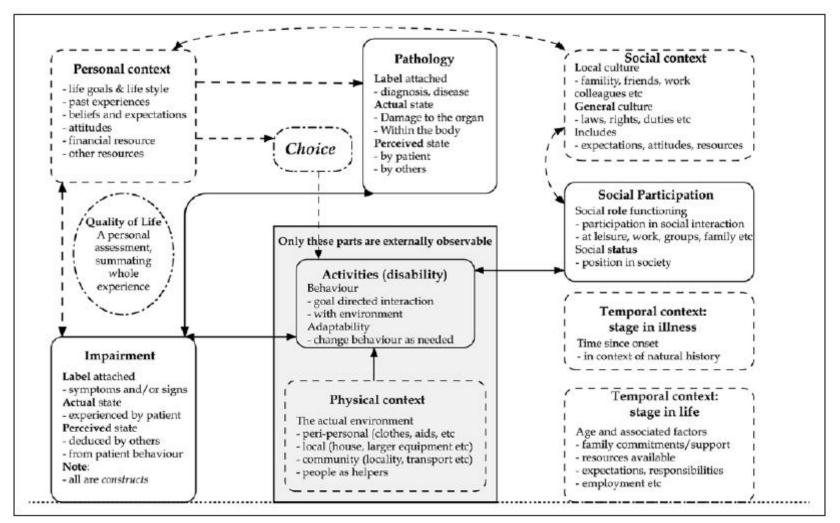
- Diagnosis reviewed as haemorrhagic subchondral cyst associated with haemarthropathy
- Bone abnormality larger
- Intense bone oedema remains

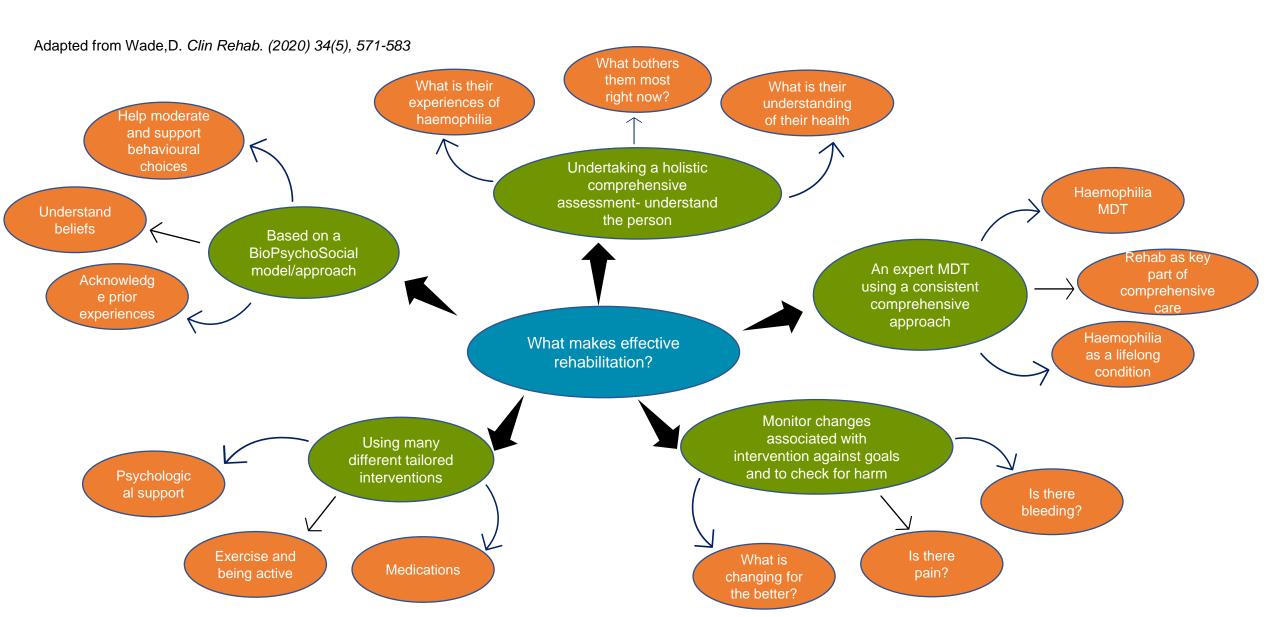


• 6 months later – Patient review:

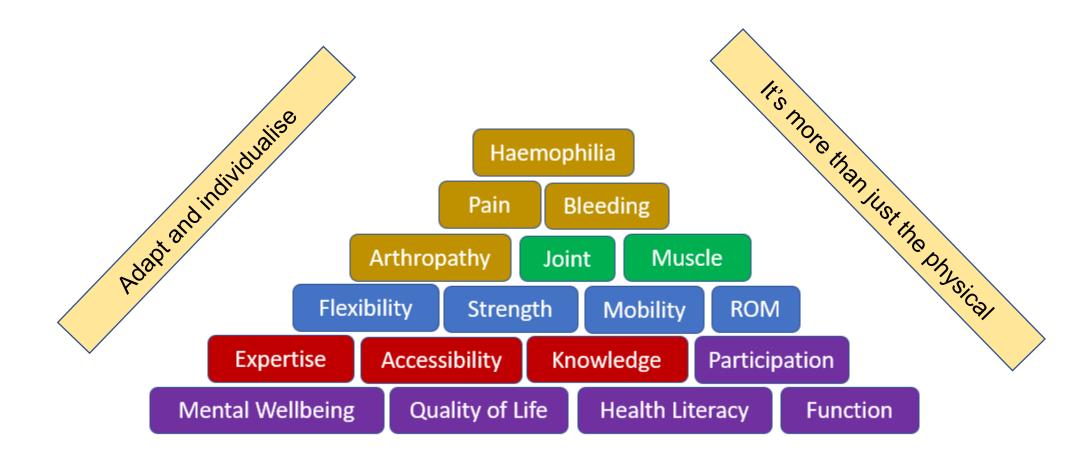
- Pain free
- Back to 18 holes of golf
- Knee subjectively feels better/safer
- Minimal need for knee support
- HJHS = 1 (was 4)
- HAL = 90 (was 76.5)

 A rehab success – by which metric?


The person exists in a life


What is rehabilitation?

- Helps a person be as independent as possible in everyday activities
- Enables participation in education, work, recreation and meaningful life roles
- Is Person centred with approaches chosen based on individual goals and preferences
- Can be in any setting hospital, home, private clinic
- Can lessen the impact and burden of health conditions
- Is an investment cost benefits to individuals and society
- Is for anyone who needs it


Rehabilitation – a whole person view

What makes effect rehabilitation?

Take home message

Accept and recognise the complexity!

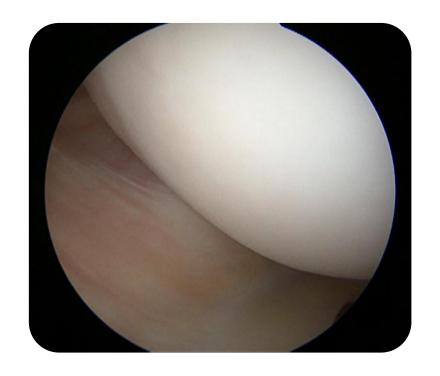
THANK YOU

MSK Comorbidities – Surgery

Synovitis & Residual Flexion Contracture of the Knee

Adolfo Llinás, MD

Chief Medical Officer & Department of Orthopedics and traumatology,
Fundación Santa Fe de Bogotá
Clinical Professor, Universidad de los Andes, School of Medicine
Colombia

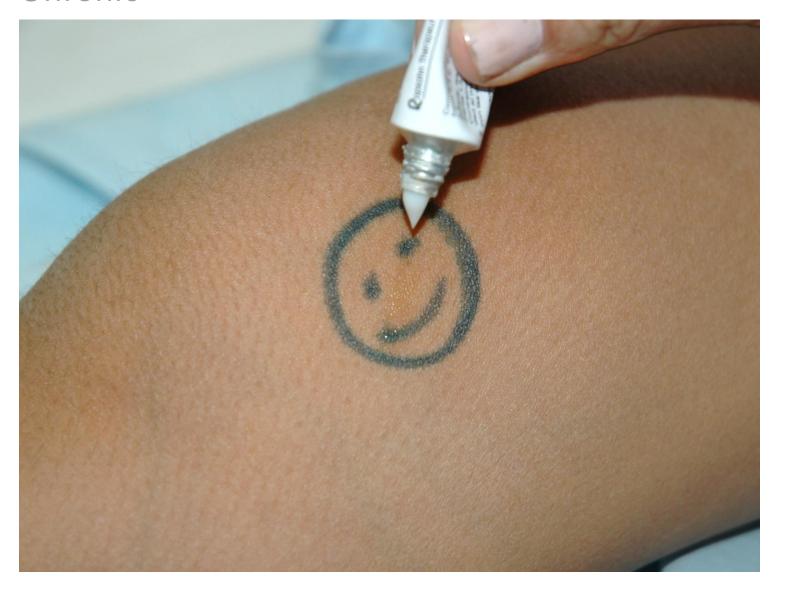


Speaker disclosures

Shareholder	None
Grant / Research Support	Bayer
Consultant	Bayer, Takeda, HED
Employee	Fundación Santa Fe de Bogotá & Los Andes University, Bogotá
Paid Instructor	None
Speaker bureau	Takeda, Bayer, Novonordisk
Other	Board member, Centro Hospitalario Serena del Mar. Advisory Board CEVAXIN, Panama.

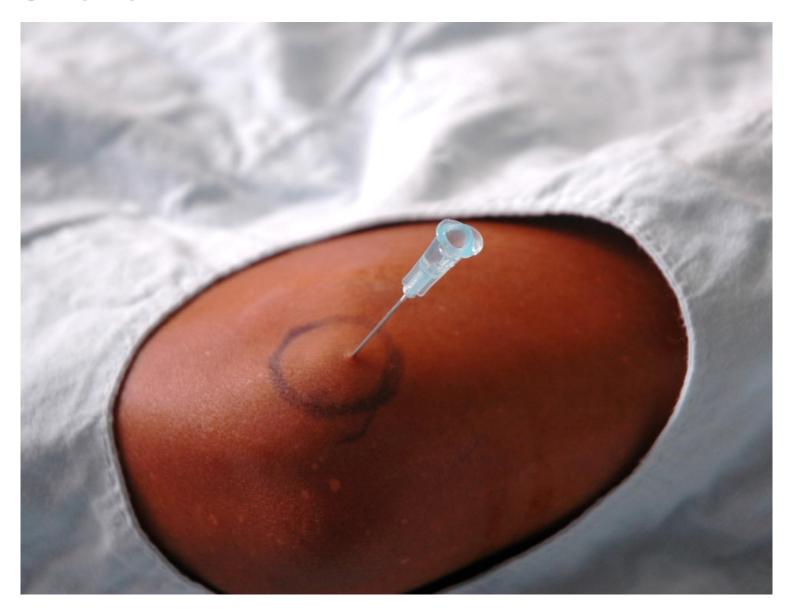
Synovitis Acute & Chronic

Synovitis

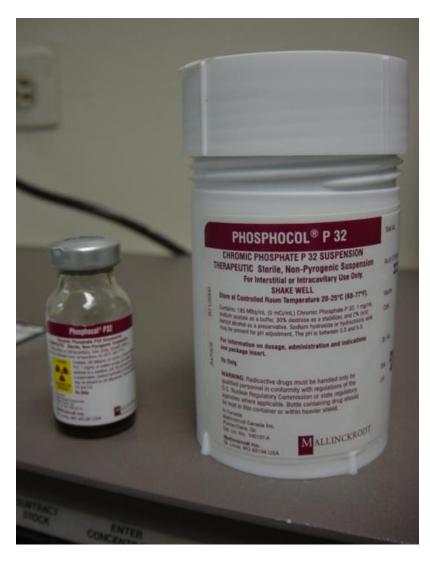

Recommendation 10.2.4:


For patients with hemophilia who have unresolved chronic synovitis, the WFH recommends nonsurgical synovectomy as a first-line treatment option using radioisotope synovectomy with a pure beta emitter (phosphorus-32, yttrium-90, rhenium-186, or rhenium-188). One dose of CFC per dose of isotope should be used.

Srivastava A, Santagostino E, Dougall A, et al. WFH Guidelines for the Management of Hemophilia, 3rd edition. Haemophilia. 2020: 26(Suppl 6): 1-158. https://doi.org/10.1111/hae.14046



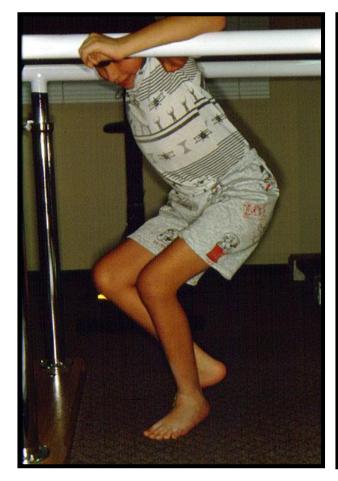
Synovitis Chronic

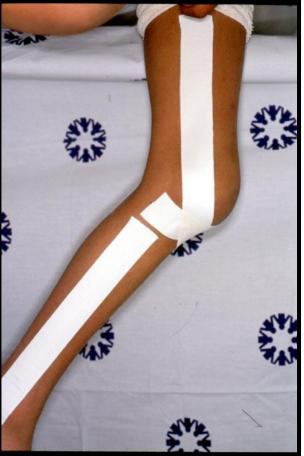


Synovitis Chronic

Synovitis Chronic

Synovitis Chronic

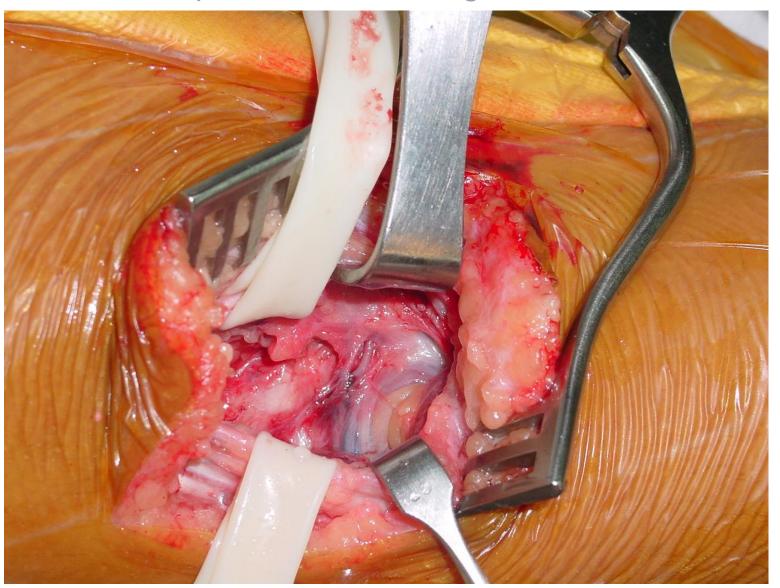



Synovitis Chronic

Post Synovectomy

Serial casting and wedges

De-subluxation & extension hinges



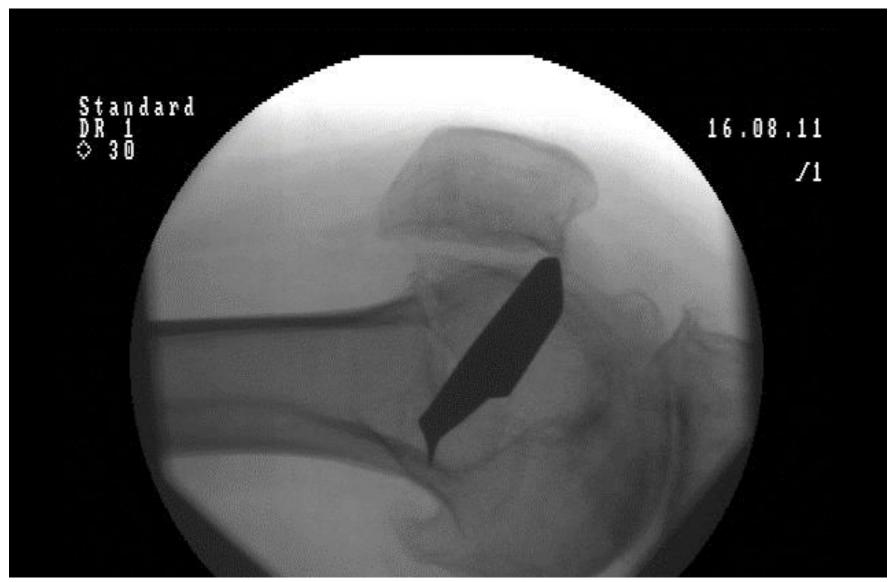
Post de-subluxation & extension hinges

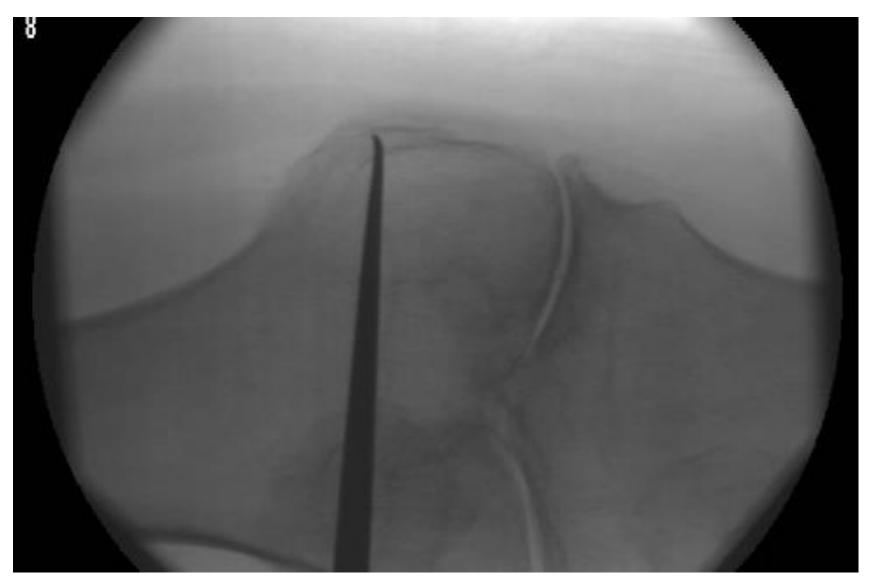
Posterior capsular release + gastrocnemius

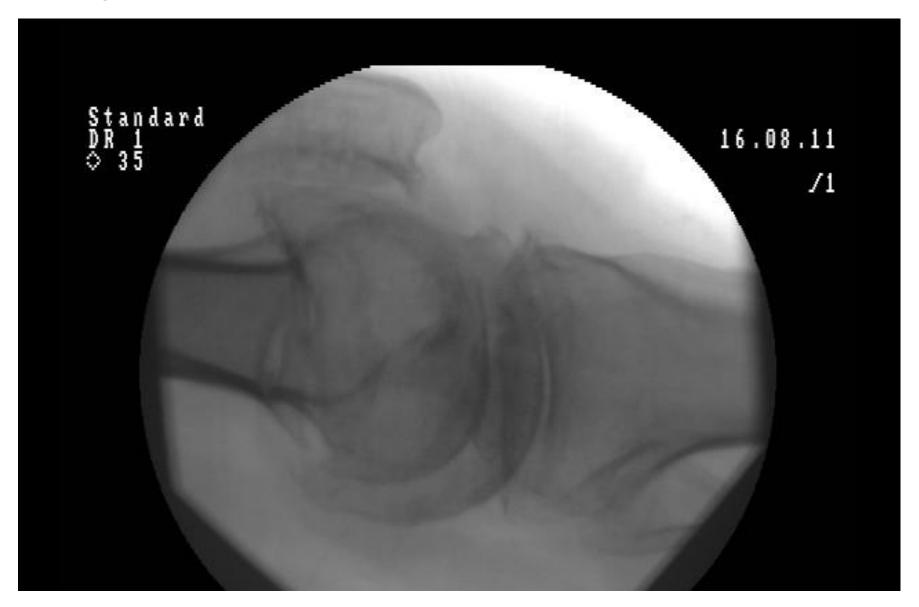
Posterior capsular release + gastrocnemius

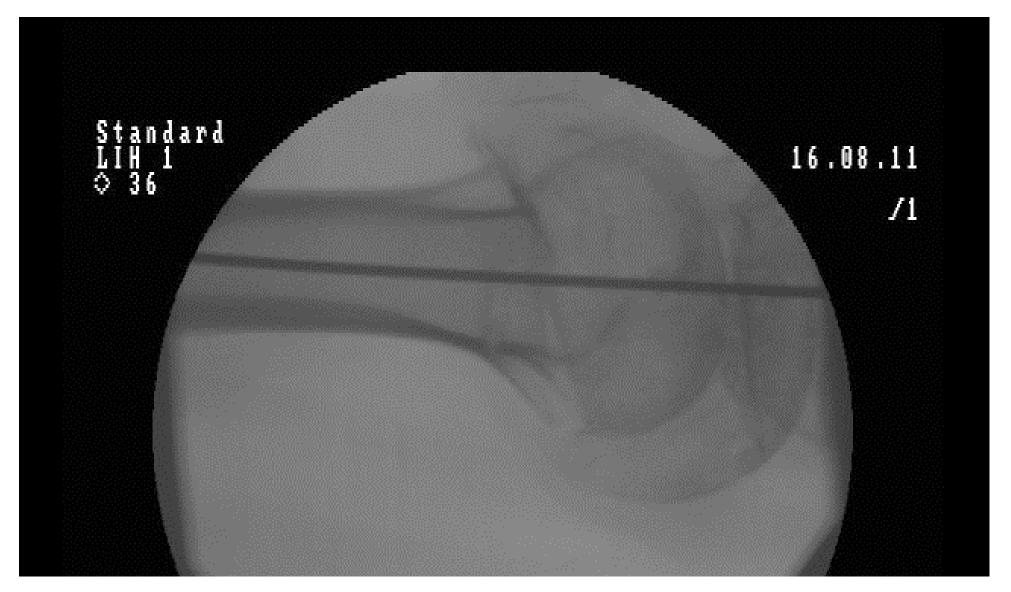
24 y 🗸 - Post-posterior release

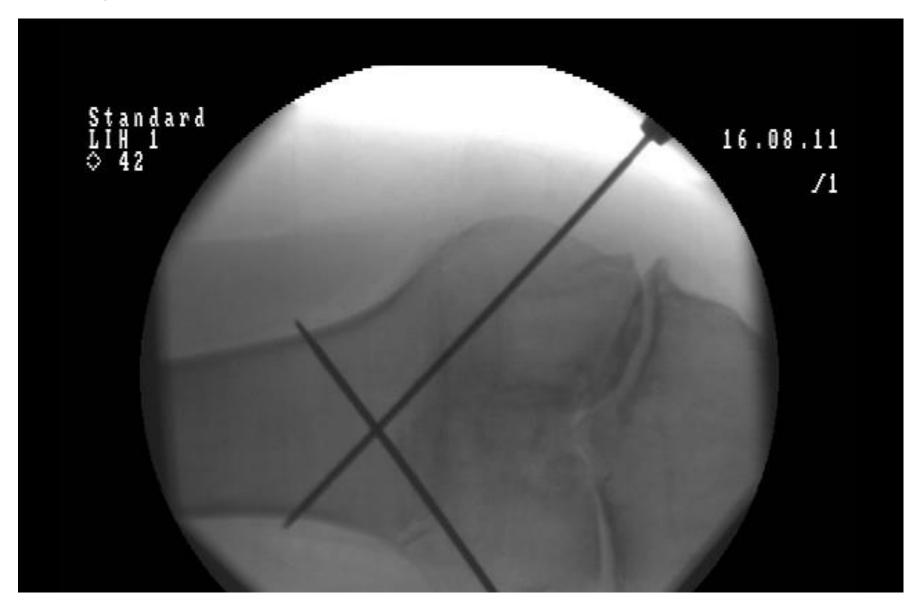




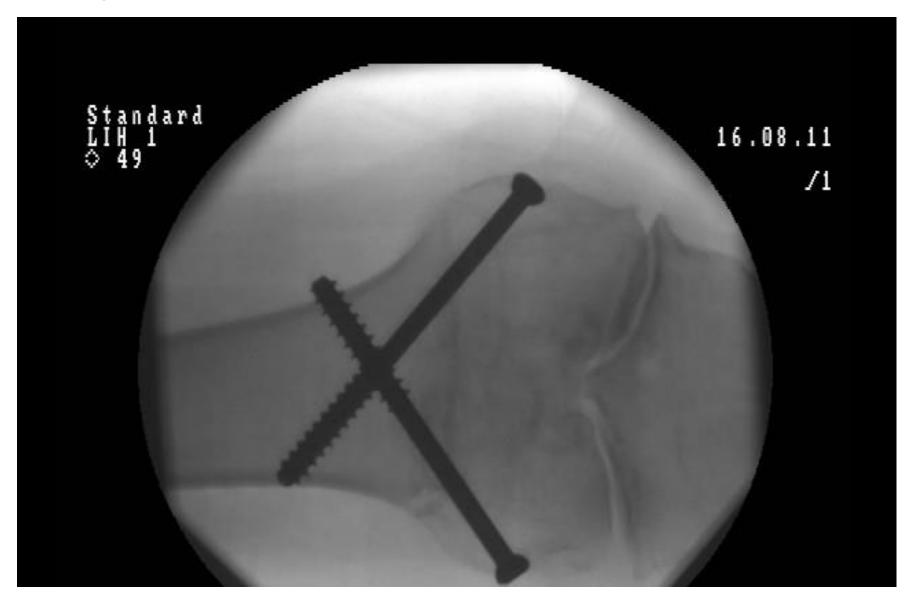


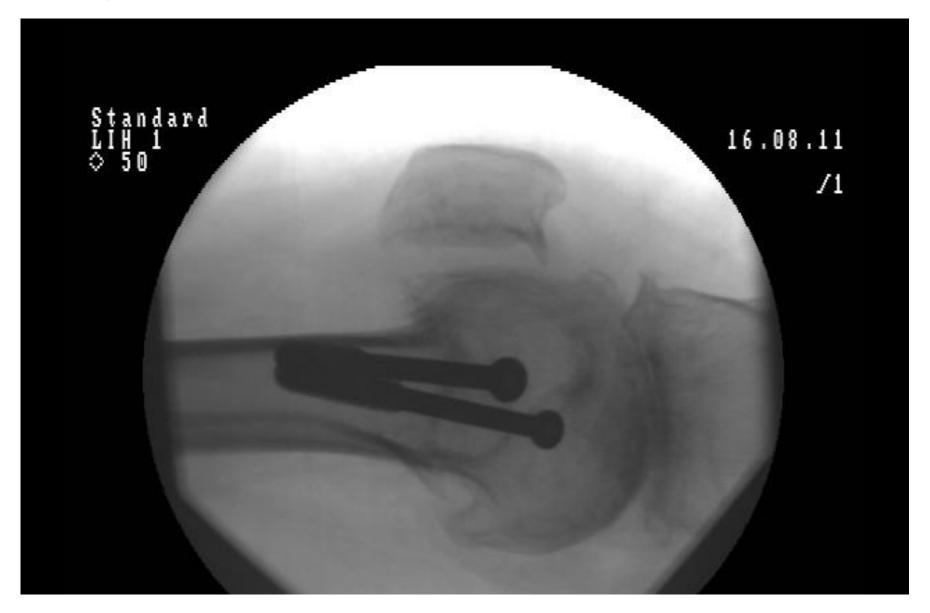


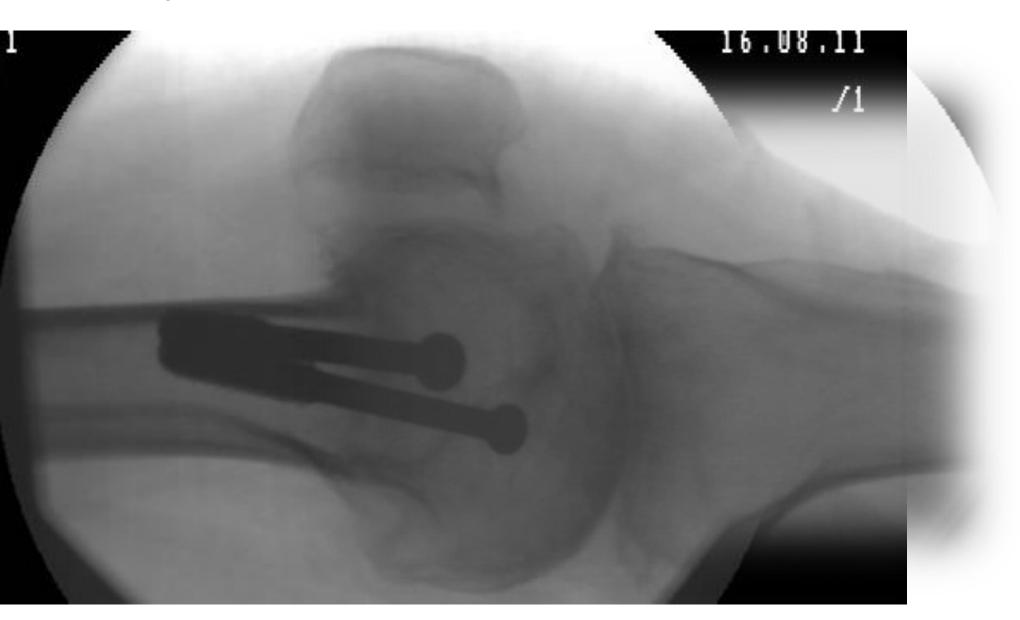












Synovitis & Flexion Contractures

Recommendation 10.7.3:

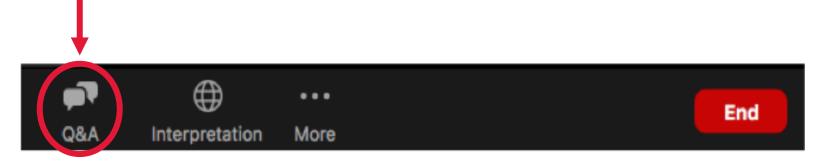
• For patients with hemophilia in the postoperative period following orthopedic surgery, the WFH recommends gradual rehabilitation by a physical therapist experienced in hemophilia management.

Synovitis

Flexion contractures Synovectomy

Cast & wedges or hinges

Posterior Release


Osteotomies

THANK YOU

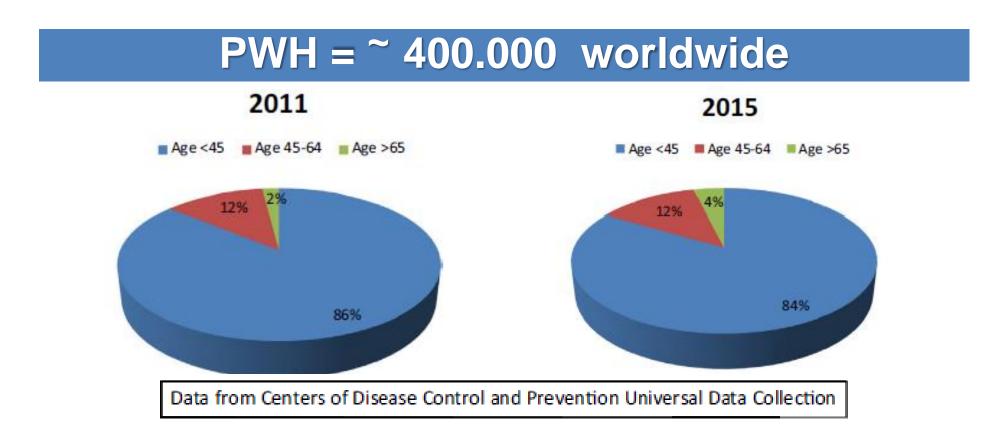
QUESTION & ANSWER

Please submit your questions in the Q&A box

Cardiovascular comorbidities – Hypertension & renal disease

Robert Klamroth, MD

Head of the Department and Director of Comprehensive Care Germany



Speaker disclosures

Shareholder	None
Grant / Research Support	Bayer, CSL Behring,
Consultant	Bayer, Biomarin, Novo Nordisk, Octapharma, Pfizer, Roche, Sanofi, Sobi, Takeda
Employee	None
Paid Instructor	None
Speaker bureau	Bayer, Biomarin, Biotest, CSL Behring, Grifols, Novo Nordisk, Octapharma, Pfizer, Roche, Sanofi, Sobi, Takeda,
Other	None

Number of persons > 65 yrs with Haemophilia

The population of elderly PWH is growing

Co-morbidities in patients with haemophilia

Improved life expectancy of haemophilia patients due to: Advances in haemophilia care and HIV /Hep C Factor replacement therapy

More older patients with haemophilia Cancer and cardiovascular disorders increasing

Disorders in the ageing haemophilia population New challenge for physicians involved in haemophilia Better knowledge and optimal management

Renal disease

A higher incidence of renal disease has been reported in people with hemophilia, compared with the general population.

Risk factors for renal disease are

- Older age
- Hypertension
- Diabetes
- HIV infection and combined antiretroviral therapy
- Use of NSAIDs

No correlation was observed with hematuria¹

Renal disease

Very few patients with hemophilia require renal replacement therapy

The choice between peritoneal dialysis and hemodialysis depends on patient-specific factors

Hemodialysis requires anticoagulation to avoid clotting of the filter

An individual approach to anticoagulation and factor replacement during hemodialysis is recommended

Personal experience with two patients with severe hemophilia on hemodialysis who required no additional anticoagulation and no additional clotting factor concentrate

Renal disease - Recommendations

Regular monitoring of renal function in older PwH

Screening for risk factors for renal disease

Supervising treatment of

- Hypertension
- Diabetes
- Use of NASIDs

Patient Case: Hypertension

Severe Hemophilia A 52 years old, 82 kg BW Intron 22 inversion HIV negative, HCV positive

History of inhibitor development ITI with partial success Reduced half-life of factor VIII

Daily injections of 1000 IU factor VIII No joint bleeds

Patient Case: Hypertension

Comorbiditiy: Arterial hypertension Antihypertensive medication since the age of 40

Died without any obvious cause Autopsy: intracerebral haemorrhage (ICH)

Lots of unused antihypertensive drugs in his apartment

Intracerebral haemorrhage in haemophilia

1977 -1999 ICH in the United Kingdom¹

Severe Haemophilia: Standard mortality ratio 39,29

Moderate/Mild: Standard mortality ratio 9.29

Prophylaxis seems to be able to reduce ICH in patients with severe haemophilia²

Hypertension is a major risk factor for ICH in all patients

Hypertension

Hypertension is a CV risk factor which has repeatedly been reported among PWH since long time:

- An increased incidence of HT (33%) was reported back in 1980 in a retrospective analysis of 233 PWH¹
- After age adjustment, Dutch PWH were twice as often treated with antihypertensives vs. the general population²(1990)
- In Canadian mild haemophiliacs, 29% were hypertensive with respect to 18% of age-matched control subjects³(2008)
- Hypertension was found more common in Italian PWH vs agematched peers⁴ (2009)

Increased prevalence of hypertension in haemophilia patients

Dietje E. Fransen van de Putte¹; Kathelijn Fischer^{1,2}; Michael Makris³; R. Campbell Tait⁴; Peter W. Collins⁵; Karina Meijer⁶; Goris Roosendaal¹; Pratima Chowdary⁷; Roger E. G. Schutgens¹; Eveline P. Mauser-Bunschoten¹

Thromb Haemost 2012; 108: 750-755

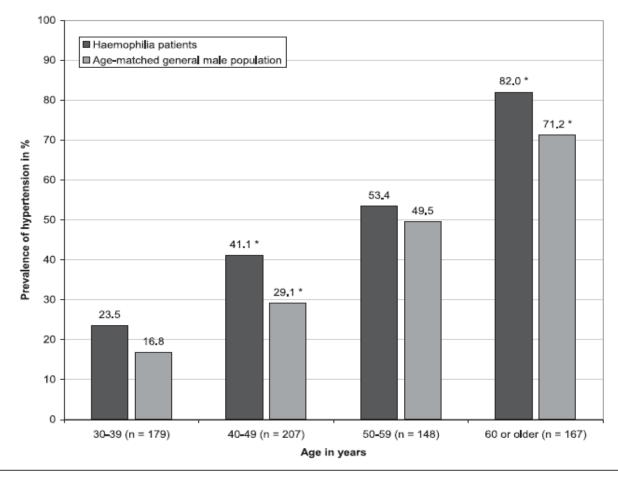
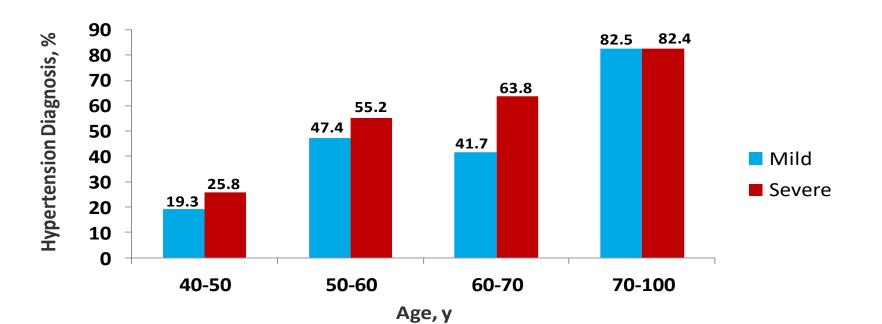


Figure 1: Prevalence of hypertension in 701 haemophilia patients according to age and comparison with the general age-matched male population. * indicates a statistically significant difference between haemophilia patients and the general age-matched male population.

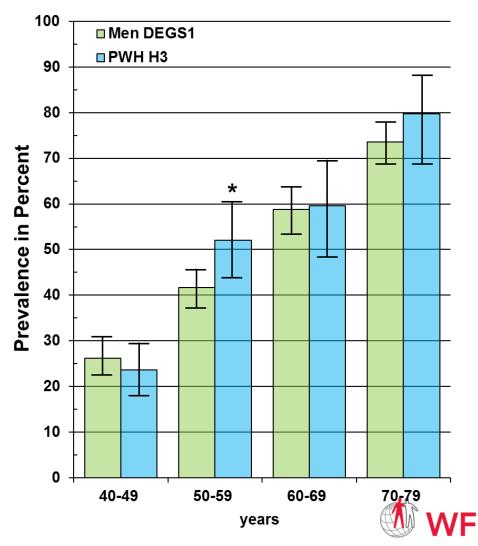

Overall: 49 % vs. 40%

The H3 Study results Cross-sectional study in Europe

532 pts (59% severe HA) > 40 yrs, 61% OD, 45.2% with known diagnosis of hypertension, 94% treated for hypertension Additional 6.7% with no diagnosis of hypertension had blood pressure >140/90 => 50.7%

Slightly higher rates in the 3 younger age categories (40–70 y) in severe hemophilia compared with mild hemophilia

Comparison of the prevalence of hypertension 100 IMEN DEGS1


Hypertension was significantly more prevalent in PWH from the H3 Study aged 50-59 years than in men from the general population from the DEGS1 Study:

40-49 yrs. p=0.48

50-59 yrs. p=0.03

60-69 yrs. p=0.90

70-79 yrs. p=0.29

Conclusions: Hypertension

Hypertension is a risk factor for intracerebral bleeding and for atherosclerosis!

Measuring the blood pressure is easy!

Treatment of hypertension is important in patients with haemophilia

Recommendation WFH

Recommendation 9.9.3:

- For all patients with hemophilia, the WFH recommends regular blood pressure measurements as part of their standard care.
- REMARK: This recommendation is based on data indicating a higher prevalence of arterial hypertension among patients with hemophilia irrespective of age as compared with males in the general population.

Recommendation WFH

Recommendation 9.9.4:

- For patients with hemophilia, the WFH recommends the same management of arterial hypertension as that applied in the general population.
- REMARK: Patients with hemophilia diagnosed with hypertension may be treated in a hemophilia treatment centre or referred to primary care providers depending on the local healthcare system and practices.

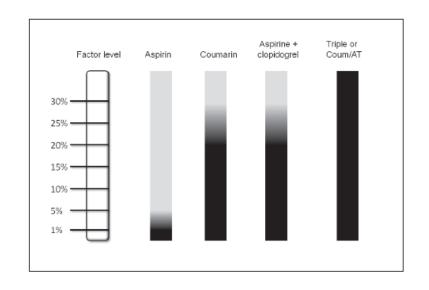
THANK YOU

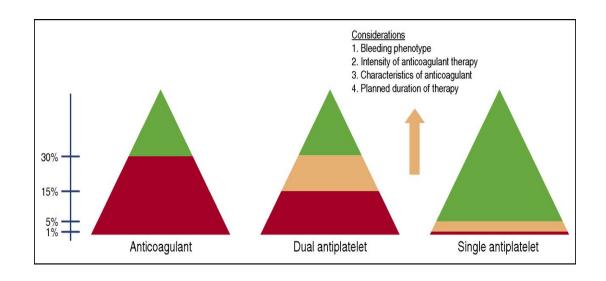
Cardiovascular comorbidities – Atrial fibrillation and anticoagulation

Prof Roger Schutgens, MD, PhD, MSc

Center for Benign Haematology, Thrombosis and Haemostasis

Van Creveldkliniek University Medical Center Utrecht, The Netherlands




Speaker disclosures

Shareholder	
Grant / Research Support	Bayer, Baxalta, CSL Behring, NovoNordisk, Octapharma, Pfizer, Sobi
Consultant	
Employee	
Paid Instructor	
Speaker bureau	
Other	

Can we anticoagulate a PWH?

Schutgens et al, Haemostaseologie 2013

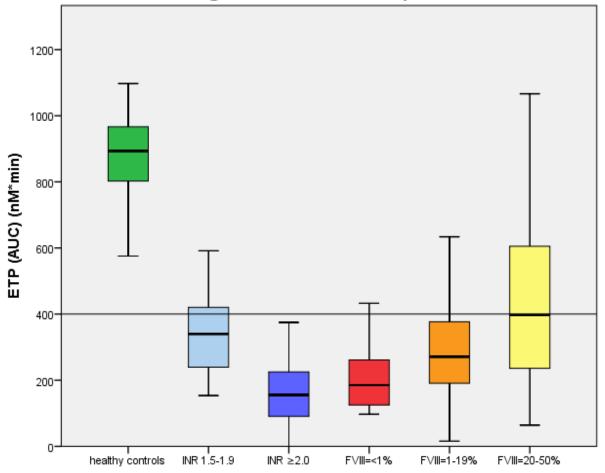
Management of atrial fibrillation in people with haemophilia – a consensus view by the ADVANCE Working Group

R. E. G. Schutgens X. R. Klamroth, I. Pabinger, G. Dolan, on behalf of the ADVANCE working group

First published: 09 October 2014 | https://doi.org/10.1111/hae.12525 | Citations: 8

Table 2. Suggested minimum trough levels of FVIII/FIX considered for safe anticoagulation treatment in different treatment settings.

Setting	Mean value (IU mL ⁻¹)	Range
Antiplatelet monotherapy	0.035	0.01-0.1
Vitamin K antagonists	0.24	0.1 - 0.5
Dual antiplatelet therapy	0.14	0.04-0.3
New oral anticoagulants	0.23	0.1 - 0.5
Cardioversion with concomitant therapeutic doses of heparin	0.40	0.1-0.8
During transoesophageal echocardiography	0.30	0.01-0.8



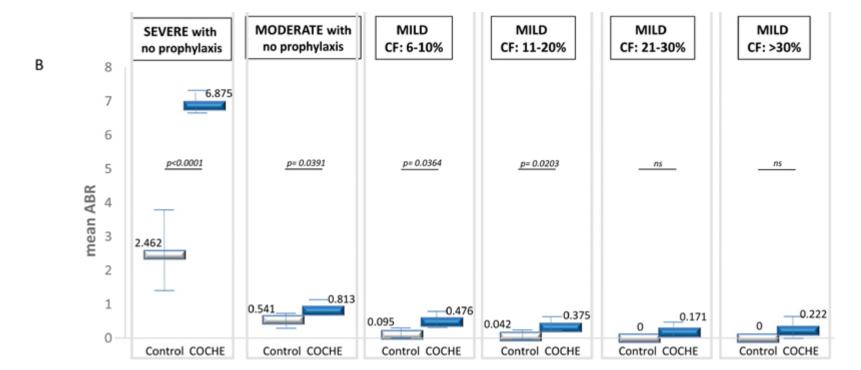
ORIGINAL ARTICLE

Comparing thrombin generation in patients with hemophilia A and patients on vitamin K antagonists

M. L. Y. DE KONING, * K. FISCHER, * B. DE LAAT, † A. HUISMAN, ‡ M. NINIVAGGI† and R. E. G. SCHUTGENS *

Endogenous thrombin potential

^{*}Van Creveldkliniek, University Medical Center Utrecht, Utrecht; †Synapse, Maastricht; and ‡Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, the Netherlands


Clinical data on anticoagulation in PWH

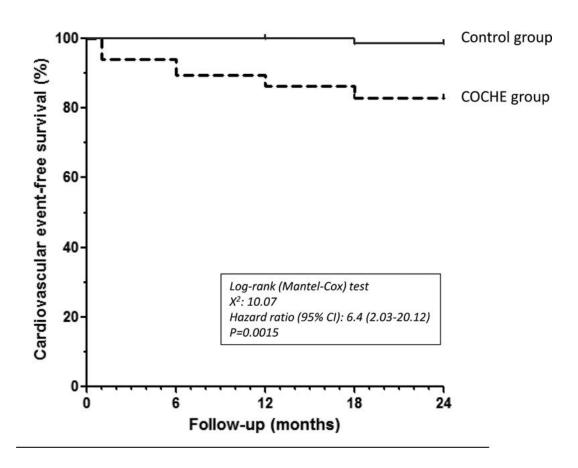
Long-Term Antithrombotic Treatments Prescribed for Cardiovascular Diseases in Patients with Hemophilia: Results from the French Registry

Benoît Guillet‡ *, Guillaume Cayla‡ *, Aurélien Lebreton • , Nathalie Trillot, Bénédicte Wibaut, Céline Falaise, Sabine Castet, Philippe Gautier, Ségolène Claeyssens, Jean-François Schved

CC BY-NC-ND 4.0 · Thromb Haemost 2021; 121(03): 287-296

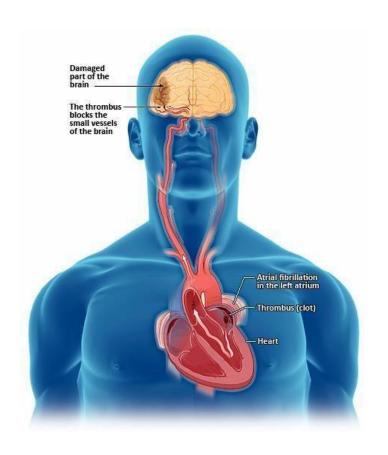
DOI: 10.1055/s-0040-1718410

Clinical data on anticoagulation in PWH

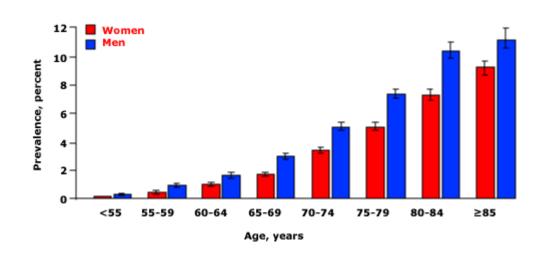

Supplementary Table S4 Summary of risk factors for major bleeding in antithrombotic-treated patients with hemophilia

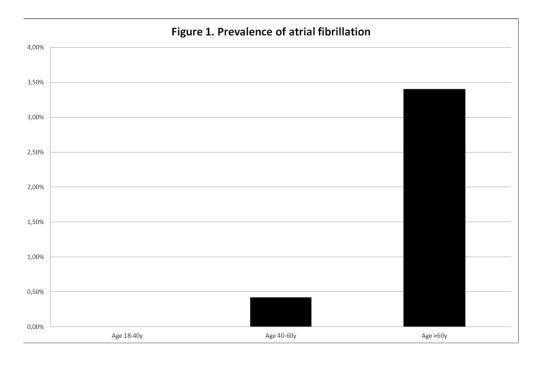
Risk factor for major bleedings	Comments
Severity of hemophilia	Mean ABR is directly correlated with basal clotting factor levels up to 20%
Clotting factor treatment	Prophylaxis in severe and moderate hemophilia attenuates mean ABR compared with controls
Type of antithrombotic treatment	Mean ABR is for DPT $>$ DAPT $>$ SAPT (with insignificantly, DAPT \ge AC \ge SAP). Antiplatelet drugs can promote GIB
HAS-BLED score ≥ 3	Other patient-related parameters than hemophilia can promote bleeding (e.g., arterial hypertension, age > 65 years old or liver disease)

Abbreviations: ABR, annualized bleeding rate; AC, anticoagulant drug alone; DAPT, dual antiplatelet therapy; DPT, dual pathway therapy; GIB, gastrointestinal bleeding; HAS-BLED, hypertension, abnormal liver or renal function, stroke, bleeding history, labile INR, elderly (> 65 years old) and drugs/alcohol/tobacco use; SAPT, single antiplatelet therapy.



Clinical data on anticoagulation in PWH


Atrial fibrillation = stroke prevention!



Prevalence

general population 1.0%

haemophilia population 0.84%

General population:

Review

> Arrhythm Electrophysiol Rev. 2021 Jul;10(2):65-67. doi: 10.15420/aer.2021.07.

The 2020 ESC Guidelines on the Diagnosis and Management of Atrial Fibrillation

Agnieszka Kotalczyk ^{1 2}, Gregory Yh Lip ^{1 2 3}, Hugh Calkins ⁴

AF Better Care (ABC) pathway

A: Avoid stroke

- Optimal stroke prevention
- Identify low-risk patients
- Dynamic assessment of the risk of stroke and bleeding
- Good quality anticoagulation (NOAC or VKA)

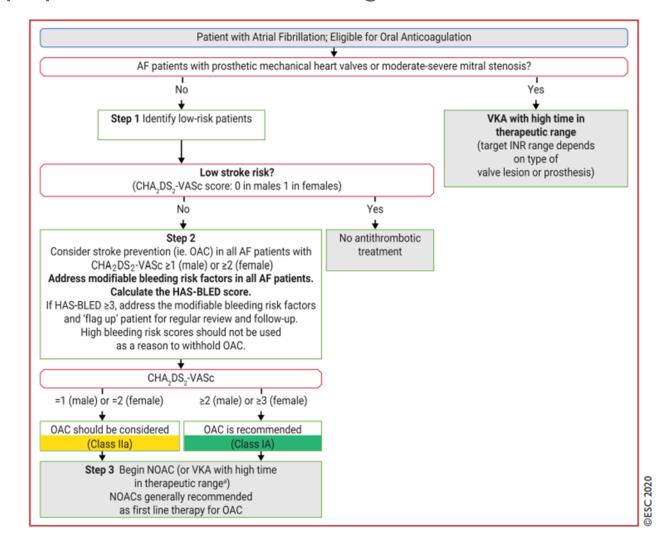
Treat: ABC pathway

B: Better symptom control

- Decision based on patient's symptoms and preferences
- · Rate control strategy
- · Rhythm control strategy

Treat: ABC pathway

C: Comorbidities and risk factors

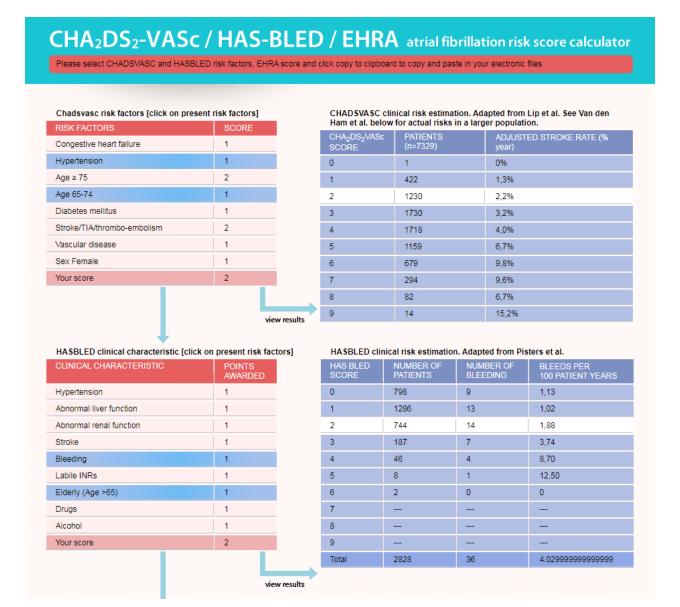

- Hypertension, heart failure, diabetes, chronic kidney disease, sleep apnoea
- Lifestyle changes: exercises, smoking cessation, reduction of obesity and alcohol intake

Treat: ABC pathway

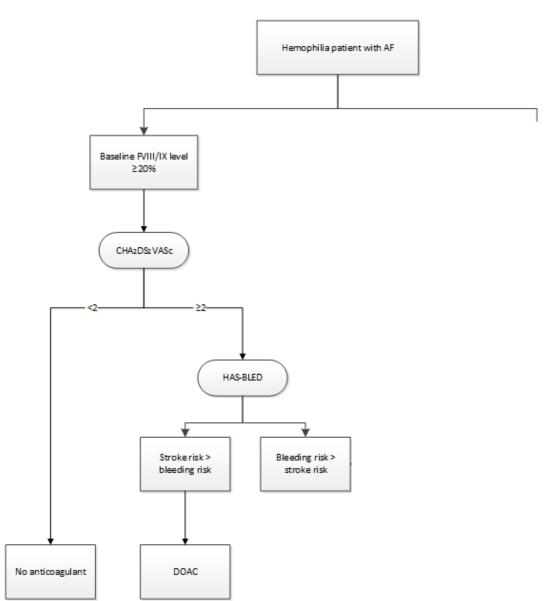
General population: 2020 ESC guideline

SCORE
1
1
2
1
1
2
1
1

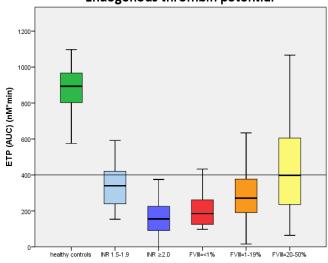
CHA ₂ DS ₂ - VASc score	Patients (N=7,329)	Thromboembolism rate (95% confidence interval)	Adjusted stroke rate (%/year)	
0		0 (0-0)	0.0	
I.	422	0.46 (0.10-1.34)	1.3	
2	1,230	0.78 (0.44-1.29)	2.2	
3	1,730	1.16 (0.79-1.64)	3.2	
4	1,718	1.43 (1.01-1.95)	4.0	
5	1,159	2.42 (1.75-3.26)	6.7	
6	679	3.54 (2.49-4.87)	9.8	
7	294	3.44 (1.94-5.62)	9.6	
8	82	2.41 (0.53-6.88)	6.7	
9	14	5.47 (0.91-27.0)	15.2	



HAS-BLED Criteria	Score
Hypertension	1
Abnormal renal or liver function (1 point each)	1 or 2
Stroke	1
Bleeding	1
Labile INRs	1
Elderly (> 65 years)	1
Drugs or alcohol (1 point each)	1 or 2


Total Score	Bleeds per 100 patient years
0	1.13
1	1.02
2	1.88
3	3.74
4	8.7
5	12.5

Managing atrial fibrillation in haemophilia



Schutgens et al, adapted from Blood 2016

Endogenous thrombin potential

Pulmonary vein isolation

Catheter Ablation for Atrial Fibrillation in Patients with Hemophilia or von Willebrand Disease

Paul R. van der Valk¹ Eveline P. Mauser-Bunschoten¹ Jeroen F. van der Heijden² Roger E. G. Schutgens¹

TH Open. 2019 Oct 24;3(4):e335-e339. doi: 10.1055/s-0039-1698756. eCollection 2019 Oct.

Patient	Age	Bleeding disorder	Clotting factor level (IU/mL)	Reason for intervention	CHA ₂ DS ₂ VASC	Duration (y)	Prior therapy	On chronic anticoagulation before PVI
1	70	НА	FVIII 0.35	AF: dyspnea and fatigue	3	5	CV, ECV	VKA
2	72	НА	FVIII < 0.01	pAF: with severe fatigue	1	7	ВВ	No
3	59	НА	FVIII 0.23	pAF: bradycardia with decreased ejection fraction	0	4	ECV, flecainide	No
4	50	НА	FVIII < 0.01	pAF: frequent tachycardia	0	5	CV, flecainide, BB	No
5	55	НА	FVIII 0.06	pAF: persistent paroxysm under medication	0	5	Flecainide, BB	No
6	67	VWD	vWF RCo 19% FVIII 0.50	AF: dyspnea and fatigue	2	7	VATS Maze; ECV	No

Abbreviations: AF, atrial fibrillation; BB, beta-blocker; CV, chemical cardioversion; ECV, electric cardioversion; HA, hemophilia A; pAF, paroxysmal atrial fibrillation; RCo, ristocetin cofactor (IU/dL); VWD, von Willebrand disease; vWF, von Willebrand factor; VATS Maze: video assisted thoracoscopic surgery.

Pulmonary vein isolation

Catheter Ablation for Atrial Fibrillation in Patients with Hemophilia or von Willebrand Disease

Paul R. van der Valk¹ Eveline P. Mauser-Bunschoten¹ Jeroen F. van der Heijden² Roger E. G. Schutgens¹

TH Open. 2019 Oct 24;3(4):e335-e339. doi: 10.1055/s-0039-1698756. eCollection 2019 Oct.

Inte	ervention	Patient	Outcome	AC before	AC after procedure	Stopped VKA/DOAC	Periprocedural groin bleeding
1	PVI	1	SR, later pAF	VKA	3 mo VKA (LMWH ^b)	No: recurrent pAF	Day 5: Hb drop 3.22 g/dL
2	PVI (redo)	1	SR	Dabigatran ^a	Dabigatran ^a	No	No
3	PVI	2	SR, later pAF	No	1 mo VKA (LMWH ^b)	Yes, as planned after 1 mo	Day 3: Hb drop 4.83 g/dL
4	PVI (redo)	2	SR under sotalol	No	1 mo VKA (LMWH ^b), 2 mo ASA	Yes, as planned after 1 mo	Postprocedure oozing during 4 h
5	PVI	3	SR	Dabigatran ^a	6 mo dabigatranª	Yes, after 6 mo	No
6	PVI	4	SR	No	6 wk VKA (LMWH ^b)	Yes	No
7	PVI	5	SR	No	6 wk dabiagtran ^a	Yes	No
8	PVI	6	SR	No	6 wk dabigatran ^a	Yes	No

Abbreviations: AC, anticoagulation; ASA, 38 mg acetylsalicylic acid; Hb, hemoglobin: 3.22 g/dL = 2.0 mmol/L; 4.83 g/dL = 3.0 mmol/L; pAF, paroxysmal atrial fibrillation; PVI, pulmonary vein isolation; SR, sinus rhythm; VKA, vitamin K antagonist: target INR 2.0–3.0. a110 mg BID 4 weeks before PVI, last dose 24 h before intervention.

bTherapeutic LMWH until therapeutic INR.

Left atrial appendix closure

Your score

Letter to the Editors-in-Chief

Left atrial appendage occlusion for management of atrial fibrillation in persons with hemophilia

Thrombosis Research

Volume 206, October 2021, Pages 9-13

3069

48

28.97

Ming Y. Lim 2 M, Mouhamed Yazan Abou-Ismail

- Male 76y,
- Mild hemophilia A (9%)
- CHADSVASC 7
- HAS-BLED 5

Total

Left atrial appendix closure

FVIII/IX %	CHADSVA SC	procedure	Antithrombotic therapy	Trough during antithrombotic therapy	Longterm anticoagulation
9	7	Factor replacement >100%	Warfarin 6w	>30%	ASA
8	6	Factor replacement >100%	DAPT	>30%	Clopidogrel
NR	3	Factor replacement	DAPT	NR	None
<1	3	Factor replacement >80%	Clopidogrel	>5%	None, epistaxis
<1	3	Factor replacement >80%	Clopidogrel	>5%	NR
<1	3	Factor replacement >60%	Clopidogrel	NR	None, epistaxis
<1	5	Factor replacement	Clopidogrel	NR	None
1-5	4	Factor replacement >50%	DAPT	NR	None
15	3	Factor replacement >80%	Warfarin	>30%	None

Conclusions


- Atrial fibrillation is an emerging issue in PWH
- Anticoagulation in PWH: feasible but individual approach

THANK YOU

Cardiovascular comorbidities – Ischaemic Cardiovascular Disease in PWH

Gerry Dolan, MD

Haemophilia Centre Director, St Thomas' Hospital, London

Speaker disclosures

Shareholder	No relevant conflicts of interest to declare
Grant / Research Support	No relevant conflicts of interest to declare
Consultant	Pfizer, Bayer, Baxter, Novo Nordisk, CSL Behring, Octapharma
Employee	No relevant conflicts of interest to declare
Paid Instructor	No relevant conflicts of interest to declare
Speaker bureau	Pfizer, Bayer, Baxter, Novo Nordisk, Biotest, Grifols
Other	

Key questions

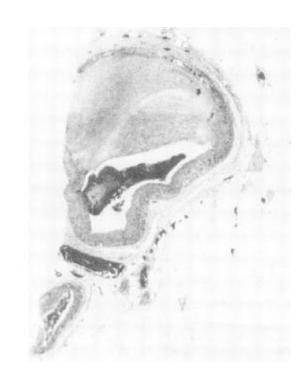
- Is cardiovascular disease a problem in persons with hemophilia (PWH)?
- Are the classical CVD risk factors the same in PWH?
- How should coronary heart disease be managed in PWH?

Cardiovascular Disease (CVD) in PWH

- PWH now have life expectancy approaching normal.
- Past cohort studies suggest PWH have a lower mortality rate from ischemic heart disease

	year	n	SMR	95% CI
Netherlands	1973-1986	717	0.2	0-1.1
Greece	1972-1993	531	0.25	0-1.4
Netherlands	1986-1992	919	0.2	0-1.1
Netherlands	1992-2001	2950	0.5	0.2-1.1
UK [HIV excluded]	1977-2000	6018	0.62	0.51-0.76

Carriers of hemophilia have 36% reduction in fatal ischemic heart disease


Fatal MI in Severe Hemophilia A

Br Heart J 1983; 49: 604-7

Coronary artery disease in severe haemophilia

M SMALL, A S JACK, G D O LOWE, A F MUTCH, C D FORBES, C R M PRENTICE From University Department of Medicine and the Department of Pathology, Royal Infirmary, Glasgow

- 57 yrs, severe hemophilia A, suffered fatal MI following factor replacement for a hematemesis
- 53 yrs, severe hemophilia A, found to have asymptomatic severe coronary artery atheroma at autopsy

Review of 42 Cases of CVD in Hemophilia A

- 36 acute MI + 6 CVA
- Age 7 79 yrs (mean 44 yrs)
- 16 of 42 less than 40 yrs of age
- 7/36 MI were fatal
- 22/36 MI followed treatment with factor replacement or (a)PCC or rFVIIa

Atherosclerosis in PWH

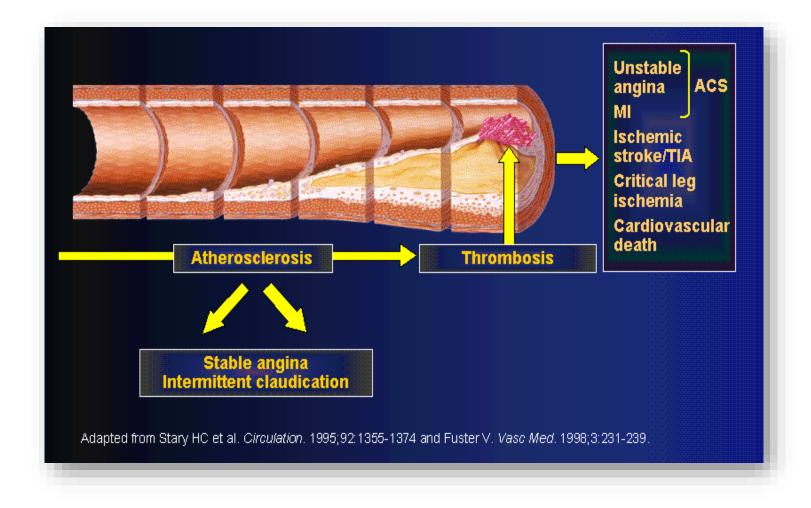
 Intima media thickness (IMT) no different in 59 PWH vs. 142 controls Sramek, Circulation 2001

Reduced IMT in 50 PWH (severe and moderate) vs. 50 age-matched controls

Bilora, Clin Appl Thromb Hemost 2006

 Carotid IMT no different in 40 PWH vs. 40 controls Sartori, Hemophilia 2008

Atherosclerosis and Haemophilia


Autopsy study

- 14 Haemophilia
 10 severe, 2 mod, 2 mild.
- 42 age-matched controls.

	Haemophilia	Controls
Coronary Stenosis	78.6%	59.5%
Stenosis Score	1.1± 0.9	1.2± 1.2

Vascular Disease: A Generalized and Progressive Process

Summary of evidence

- Cardiovascular risk factors similar or increased in PWH
- Atherosclerosis similar or slightly reduced in PWH
- Clinical IHD and fatal MI possibly reduced in PWH

 Hypothesis: Reduced FVIII may not prevent atherosclerosis but may reduce the risk of occlusive thrombosis at the site of a ruptured plaque

Current ESC Guidelines on Management of ACS

European Heart Journal (2008) 29, 2909-2945 doi:10.1093/eurhearti/ehn416 **ESC GUIDELINES**

Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation

European Heart Journal (2010) **31**, 2501–2555 doi:10.1093/eurheartj/ehg277

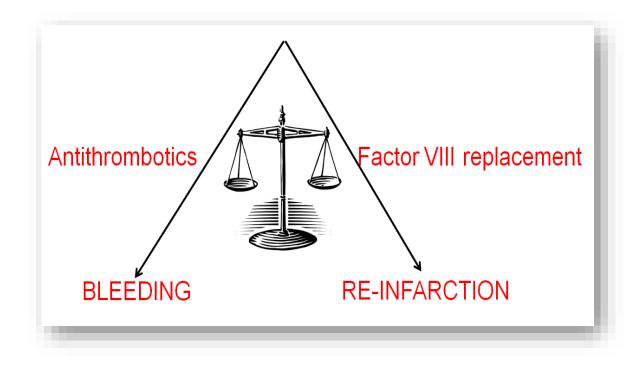
Guidelines on myocardial revascularization

The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

Current ESC Guidelines on Management of ACS

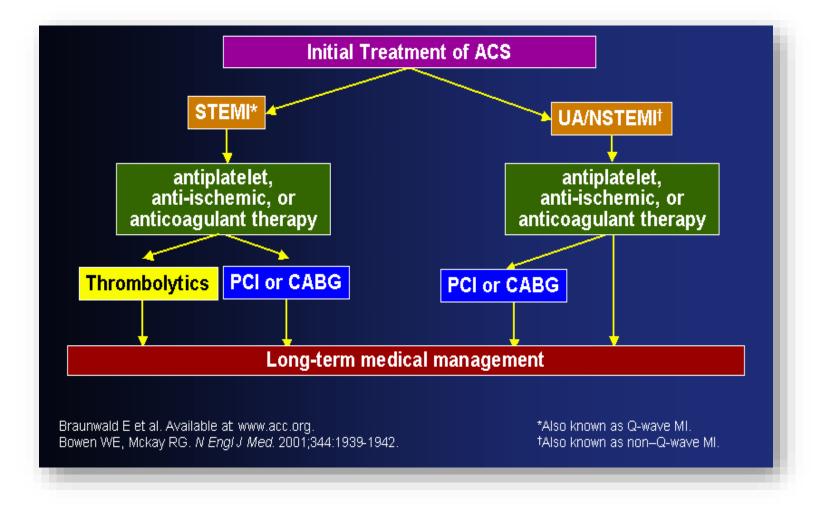
- Acute Coronoary Syndrome (ACS)
 - 'Time is muscle ' earlier intervention saves lives
 - Dual anti-platelet therapy for 12 months

STEMI

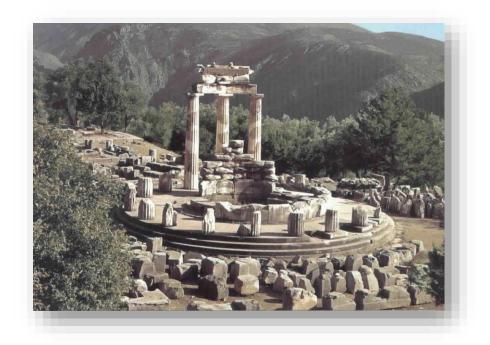

Mechanical revascularisation (PCI) > fibrinolysis[especially within 120 mins]

NonSTE ACS

Nitrates, beta-blocker, anticoagulation



ACS in PWH: balancing the risks


Treatment of Acute Coronary Syndrome

The Delphi Method

- The Delphi Method is a group decision process.
- The Delphi Method uses a panel of experts.
- Expert responses to a series of questionnaires are anonymous.
- Each round of questionnaires results in a median answer.
- The process guides the group towards a consensus.

Haemophilia

The Official Journal of the World Federation of Hemophilia,

European Association for Haemophilia and Allied Disorders and the Hemostasis & Thrombosis Research Society

Haemophilia (2013), 19, 833-840

DOI: 10.1111/hae.12189

ORIGINAL ARTICLE Clinical haemophilia

Applicability of the European Society of Cardiology guidelines on management of acute coronary syndromes to people with haemophilia – an assessment by the ADVANCE Working Group

P. STARITZ,* P. DE MOERLOOSE,† R. SCHUTGENS; and G. DOLANS ON BEHALF OF THE ADVANCE WORKING GROUP

*Department of Internal Medicine, Hemophilia Care Center Heidelberg, SRH Kurpfalzkrankenhaus, Heidelberg, Germany; †Hemostasis Unit, University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland; ‡Department of Hematology, Van Creveldkliniek, University Medical Center Utrecht, Utrecht, The Netherlands; and §Department of Haematology, Queens Medical Centre, Nottingham University Hospitals, Nottingham, UK

Areas where Agreement Reached Easily

 PWH should wear or carry an alert allowing medical staff to easily identify them as having a bleeding disorder

 A hemophilia expert should be consulted as soon as a PWH presents with an ACS

Areas where Agreement Reached Easily

- PWH should wear or carry an alert allowing medical staff to easily identify them as having a bleeding disorder
- A hemophilia expert should be consulted as soon as a PWH presents with an ACS
- PWH, even after factor VIII replacement, should be categorised as an ACS patient with high bleeding risk
- In ACS (STEMI or NSTE-ACS) dual anti-platelet therapy should be administered without delay

STEMI in PWH – PCI vs. Fibrinolysis

 Experts agree that PCI is preferred in PWH, although fibrinolysis should be considered if patient not suitable for PCI or it is not available.

Conclusions

- PWH do suffer from atherosclerosis, and are at risk of ACS (especially following factor or by-passing agent therapy)
- In the event of an ACS in a PWH:
 - A hemophilia expert should be consulted at the earliest opportunity
 - In general, Factor replacement should be given early in order to
 - allow standard ACS treatment strategies to be followed
 - Fibrinolysis or PCI should be delayed until factor replacement therapy has been administered
- Dual anti-platelet therapy should be administered for as short a duration as possible, and should be accompanied by gastroprotection and in most cases prophylaxis factor replacement therapy

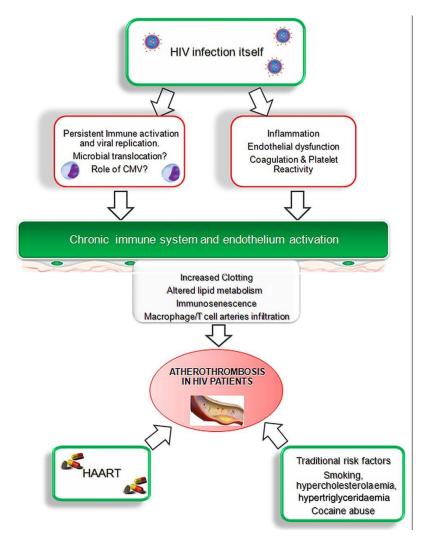
Important Considerations

Much of haemophilia care has been focussed on

- Preventing or treating bleeding
- Manging musculoskeletal disease
- Managing transfusion-transmitted infection

CVD Risk Factors in PWH

TABLE II. Patient Characteristics Independently Associated With Ischemic and Other Heart Disease Among 3,422 Persons With Hemophilia


Factor ^a	Odds ratio (95% CI)	P value
Ischemic heart disease		
Age (per 10-year increase)	2.1 (1.7-2.5)	< 0.001
Hypertension	5.4 (2.6-11.0)	< 0.001
Diabetes	3.2 (1.3-8.1)	0.01
Hyperlipidemia	3.8 (0.9–15.5)	0.06
Other heart disease		
Age (per 10-year increase)	1.7 (1.5–1.9)	< 0.001
Hypertension	3.0 (1.7-5.3)	0.001
HIV infection	2.1 (1.3-3.5)	0.005
Hemophilia B (vs. A)	1.6 (1.0-2.6)	0.05
Diabetes	2.0 (0.9-4.2)	0.08

^aFactors included in both logistic regression models are age, race (white vs. other), hemophilia type, severity (severe vs. mild/moderate), inhibitor, diabetes, hypertension, hyperlipidemia, and HIV and HCV infection.

Pathogenesis of Atherothrombosis in HIV Infection

HIV Infection

- Ignorance or wariness of haemophilia → in many countries
- HTC focus of ALL medical issues
- Many patients do not access primary care and preventative medical programmes

Important Considerations

- Who manages?
 - a) Weight management
 - b) Exercise strategies
 - c) Stopping smoking
 - d) Blood pressure management
 - e) Diabetes screening
 - f) Lipid screening and management

Role of HTC

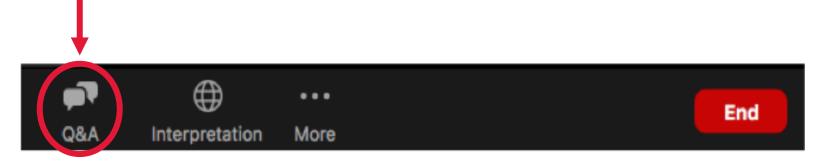
- Ensure a holistic healthcare programme for PWH
 - a) Adapt local comprehensive care to manage these issues.
 - b) Work with primary and secondary care systems to ensure delivery of care and communication eg patient passport.

Summary

- · The focus on medical morbidity in haemophilia is a success story!
- Improvement in haemophilia therapy → marked reduction in death from haemorrhage.
- Recombinant/Viral inactivation methods → eliminated HIV/HCV.
- Improved antiviral therapy → greatly reduced deaths from TTI.

 Important we are proactive in supporting our patients though later life.

 Adapt Comprehensive Care to address issues such as Ischaemic Heart Disease.



THANK YOU

QUESTION & ANSWER

Please submit your questions in the Q&A box

This webinar was part of a series. The last session of this year will be taking place on :

Thursday, December 16, 2021 from 8AM to 10AM ET

Registration will be open soon.

JOINUS IN MONTRÉALOR VIRTUALLY FOR

THE LARGEST INTERNATIONAL MEETING FOR THE GLOBAL BLEEDING DISORDERS COMMUNITY

THANK YOU!

¡GRACIAS! MERCI!

شکرا

СПАСИБО

STAY SAFE!

