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Genes and Proteins
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	✓ Other Phenotypes Associated with the F8 Gene
	✓ Other Phenotypes Associated with the F9 Gene

	✓ Deep Vein Thrombosis (DVT) Protection
	✓ Spectrum of Practical Approaches Applied in 

Genetic Testing
	✓ Standardized Nomenclature and Pathogenic 

Potential of Variants

Genetic analysis of hemophilia is important in defining the underlying cause of the bleeding disorder in 
affected individuals and their family members. Understanding of the genetic variant associated with the 
phenotype can help to predict the severity of the disorder, including the risk of inhibitor development. It 
also aids in the identification of female carriers of hemophilia, who may be offered prenatal diagnosis. It 
is important that individuals who are proceeding to genetic investigation undergo appropriate genetic 
counselling prior to any testing. The recent WFH Guidelines for the Management of Hemophilia (3rd 
edition) (Srivastava et al, 2019) contain a chapter dedicated to the genetic assessment of individuals with 
hemophilia A and hemophilia B. This laboratory manual chapter describes the genetic basis of hemophilia 
A and B and highlights the heterogeneity of practical approaches that are currently available throughout 
the world that may be used to investigate the underlying genetic variants. It also describes the use of 
standardized nomenclature for the description of genetic variants, and their classification of pathogenicity, 
as well as highlighting the importance of a clear, concise interpretive report which outlines the genetic 
result and the implications for the individual and their family.

Molecular Characteristics of Hemophilia-Related Genes and Proteins: The molecular features of hemo-
philia genes, coagulation FVIII or F8, and coagulation FIX or F9, are shown in Table 41. Table 41 shows 
the genomic coordinates on GRCh38 (hg38), gene size and cytogenetic location of F8 and F9, their exon 
complexity (exon number), updated curated versions of RefSeq files (i.e., NG_..., NM_..., NP_...), and the 
relevant molecular size of the main gene transcripts and their derived polypeptide isoforms. 

Table 41. Molecular features of F8 and F9 genes
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Gene name
Cytogenetic 
location

GRCh38 (hg38) 
(coordinates) 
NC_000023.11 
(length [bp])

Genomic RefSeq 
(coordinate 
range)

Main transcript* 
RefSeq (length 
[nts]) (exons)

Main 
protein* 
RefSeq 
(length [aa])

OMIM 
#

F8 coagulation 
factor VIII

Xq28 complement 
(154,835,792-
155,022,723)

(186,931)

NG_011403.2

(5,001-191,932)

NM_000132.4

(9032) (26)

NP_000123.1

(2351)

300841

F9 coagulation 
factor IX

Xq27.1 (139,530,739-
139,563,459)

(32,720)

NG_007994.1

(5,001-37,723)

NM_000133.4

(2800) (8)

NP_000124.1

(461)

300746

HGNC: HUGO Gene Nomenclature Committee. Length [Units]: [bp], base pairs; [nts], nucleotides; [aa]; 
amino acids. *Only the longest (most significant) transcript variant and their derived main isoform are 
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indicated. OMIM: Online Mendelian Inheritance in Man (https://omim.org/); #, accession number. Data 
were collected from NCBI (National Center from Biotechnology Information) accessed Jan/18/2024 (https://
www.ncbi.nlm.nih.gov/). RefSeq indicates Reference Sequence files from the NCBI browser platform. 

Additionally, Table 42 shows the most relevant characteristics of the coagulation FVIII and FIX proteins. 
Table 42 compiles data from the main protein isoforms, the amino-acid (aa) cartography of recognizable 
protein domains (specified by UNIPROT database), and protein database (PDB) files associated with 
3D-structure models (FVIIIa and FIXa atom 3-dimensional coordinates).

Table 42. Molecular features of coagulation factor VIII and IX proteins
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Protein Name  
main isoform

Isoform 
RefSeq 
(length [aa])

UNIPROT* 
#

Isoform domains: UNIPROT  
(aa coordinates)

3D-structure  
PDB id 
(aa coordinates)

FVIII coagulation 
factor VIII 
isoform a 
preproprotein

NP_000123.1

(2351)

P00451 Signal peptide: (1-19)

A1: F5/8 type A 1 (20-348)

A2: F5/8 type A 2 (399-730)

B: B-region (760-1667)

A3: F5/8 type A 3 (1713-2040)

C1: F5/8 type C 1 (2040-2188)

C2: F5/8 type C 2 (2193-2345)

Mature FVIIIa 2R7E.
pdb**

A: Heavy chain 

 A1-A2 (Legacy 
1-725)

B: Light chain

 A3-C1-C2 (Legacy 
1689-2332)

FIX coagulation 
factor IX isoform 
1 preproprotein

NP_000124.1

(461)

P00740 Signal peptide: (1-28) – Pro-
peptide: (29-46)

Gla: γ-carboxyglutamate-rich (47-92)

EGF1: Ca++-binding EGF-like 1 
(93-129)

EGF2: EGF-like 2 (130-171)

Act_peptide: Activation peptide 
(192-226)

Tryp_SPc: Trypsin-like serine 
protease (227-457)

Homology model 
FIXa.pdb***

L: Light chain

 Gla-EGF1-EGF2 
(47-171)

H: Heavy chain 

 Tryp_SPc (227-461)

*UNIPROT protein browser (URL: https://www.uniprot.org/). **Shen et al, 2008. ***Curators from the 
EAHAD Variant Databases Project (Rallapalli et al, 2013; McVey et al, 2020). Most data were collected 
from the EAHAD (European Association for Haemophilia and Allied Disorders) Coagulation Factor Variant 
Databases (URL: https://dbs.eahad.org/) accessed Jan/18/2024. Codons and amino acids (aa) are num-
bered following HGVS rules (i.e., codon +1 coding for the first residue (Met) of the primary polypeptide 
in FVIII and FIX). In Legacy numbering, codon/amino-acid +1 refers to that coding for the first amino-acid 
of the mature FVIII protein (excluding 19 aa of the signal-peptide) and FIX protein (excluding 46 aa of the 
signal-peptide and the pro-peptide). Although HGVS numbering is recommended, Legacy numbering 
has been extensively used in former publications. 

Spectrum of Causative Variants in Hemophilia: Most pathogenic variants affecting the F8 gene cause 
hemophilia A, whilst most pathogenic F9 variants cause hemophilia B. The Online Mendelian Inheritance 
in Man (OMIM) database (https://www.omim.org) compiles a wide set of comprehensive information about 
human genes, indicates variants affecting their function, and describes and classifies their associated 
phenotypes. The OMIM database indicates that F8 variants are associated with two different phenotypes: 
hemophilia A (#306700) and thrombophilia 13 (X-linked, due to FVIII defect) (#301071) ((THPH13); while 
F9, with four phenotypes: hemophilia B (#306900), thrombophilia 8 (X-linked, due to FIX defect) (#300807) 
(THPH8), protection against deep venous thrombosis (DPV) (#300807), and warfarin sensitivity (#301052). 
Table 43 and Table 44, respectively, show the spectrum of F8 mutations causing hemophilia A according 

https://www.uniprot.org/
https://dbs.eahad.org/
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to the coagulation FVIII activity levels (FVIII:C) and F9 mutations causing hemophilia B, associated with 
the FIX levels (FIX:C). Most relative prevalences of hemophilia A and hemophilia B causative variants, 
listed in Tables 43 and 44, were extracted from the European Association for Hemophilia and Allied 
Disorders (EAHAD) databases. The EAHAD F8 variant database excludes prevalent inversions associated 
with severe hemophilia A involving almost half of patients. In order to present an unbiased prevalence of 
severe hemophilia A causative mutations, their relative frequencies were merged taking into account the 
worldwide averages of the F8 intron 22 inversions (Inv22) reported by Antonarakis et al (1995), and those 
estimated for the F8 intron 1 inversion (Inv1) from an international hemophilia A patient series (Rossetti 
et al, 2004) (Table 43). 

Table 43. Most typical hemophilia A causative F8 variants in hemizygous patients from international sources.

Variant type by effect

Severe non 
inversions 
# cases (%)

Severe Global 
# cases (%)

Moderate   
# cases (%)

Mild 
# cases (%) References

Missense 1418 (30.2) (16.2) 1340 (79.9) 3048 (95.8) F8_var_db EAHAD*

In-frame-indel 70 (1.5) (0.8) 19 (1.1) 32 (1.0) F8_var_db EAHAD*

Frameshift-indel 1487 (31.7) (17.0) 142 (8.5) 27 (0.9) F8_var_db EAHAD*

Splicing defect 320 (6.8) (3.7) 98 (5.8) 68 (2.1) F8_var_db EAHAD*

Nonsense 968 (20.6) (11.1) 59 (3.5) 4 (0.1) F8_var_db EAHAD*

Large deletion (SV) 426 (9.1) (4.9) 19 (1.1) 3 (0.1) F8_var_db EAHAD*

Total non-inversions 4689 (100) (53.7) 1677 (100) 3182 (100) F8_var_db EAHAD*

Inv22 (SV) type 1

Inv22 (SV) type 2

Inv22 (SV) other types

740 (35.4)

140 (6.7)

25 (1.1)

Antonarakis et al, 
1995

Total Inv22 2093 (43.2)

Inv1 (SV) 19 (3.1) Rossetti et al, 2004

Total Inv1 622 (3.1)

SV indicates structural variants including copy number variants (CNVs) as large F8 deletions and large F8 
inversions (non-CNV) as the intron 22 inversion (Inv22) and intron 1 inversion (Inv1). Data from F8 inver-
sions’ uninformative patients were obtained from EAHAD (European Association for Haemophilia and 
Allied Disorders) databases registering individual patients. *F8 variant database (http://f8-db.eahad.org/). 

The most characteristic and recurrent variant causing severe hemophilia A worldwide, is the F8 intron 22 
inversion, a large perfect inversion of 600 kb mediated by recombination between inverted repeats of 10 
kb (int22h or h) disrupting the F8 structure impeding the normal RNA splicing between exons 22 and 23 
(Lakich et al, 1993; Naylor et al, 1993). There is a F8 intragenic copy of int22h within intron 22 (h1) and two 
extragenic copies (h2 and h3). Depending on which extragenic copy recombines with the intragenic one, 
the Inv22 shows a pattern type 1 (h1/h3) or a pattern type 2 (h1/h2). The Inv22 originates almost exclusively 
from male germ cells (Rossiter et al, 1995) and, consequently, the majority of mothers of patients with the 
Inv22 are carriers (Tizzano et al, 1995). The molecular mechanism of non-allelic homologous recombina-
tion between large inverted repeats in male meiosis supports the Inv22 recurrence as the most prevalent 
cause for severe hemophilia A worldwide (Table 43). Similarly, the F8 intron 1 inversion (Inv1) is a large 
perfect DNA inversion caused by recombination between 1 kb inverted repeats (int1h) disrupting the F8 
structure at intron 1 (Bagnall et al, 2001) and involves an estimated average of 3% of severe hemophilia 
A patients worldwide (Table 43). 

http://f8-db.eahad.org/
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The remaining group of patients with severe, moderate, or mild hemophilia A (Table 43), uninformative 
for the F8 inversions, and all patients with hemophilia B (Table 44) show a typical spectrum of deleterious 
variants, including single nucleotide substitutions (SNV) predicting missense, nonsense, or splicing defects; 
small insertions/deletions (INDEL) predicting frameshifts or in-frame changes; or, less frequently, large 
copy number variations (CNVs), mostly large deletions. 

Table 44. Most typical hemophilia B causative F9 variants in hemizygous patients from international sources

Variant type by effect
Severe   
# cases (%)

Moderate  
# cases (%)

Mild 
# cases (%) References

Missense 999 (52.3) 1039 (85.1) 719 (95.0) F9_var_db EAHAD*

In-frame-indel 27 (1.4) 9 (0.7) 1 (0.1) F9_var_db EAHAD*

Frameshift-indel 185 (9.7) 42 (3.4) 2 (0.3) F9_var_db EAHAD*

Splicing defect 135 (7.1) 66 (5.8) 30 (4.0) F9_var_db EAHAD*

Nonsense 459 (24.0) 62 (5.1) 5 (0.7) F9_var_db EAHAD*

Large deletion (SV) 107 (5.6) 3 (0.3) F9_var_db EAHAD*

Total 1912 (100) 1221 (100) 757 (100) F9_var_db EAHAD*

SV indicates structural variants as large deletions affecting partially or totally the F9 gene. Data from HB 
patients were obtained from EAHAD (European Association for Haemophilia and Allied Disorders) data-
bases registering individual patients. *F9 variant database (https://f9-db.eahad.org/).

Information about F8 and F9 variants is compiled in publicly accessible databases, such as those developed 
by the CDC (Centers for Disease Control and Prevention) named CHAMP and CHBMP for hemophilia A 
and hemophilia B, respectively (https://www.cdc.gov/ncbddd/hemophilia/champs.html), and by EAHAD 
(European Association for Haemophilia and Allied Disorders) for F8 (http://f8-db.eahad.org/) and F9 
(http://f9-db.eahad.org/) (Tables 43 and 44). Accessed on January 18, 2024, EAHAD databases contain 
information from 3052 unique F8 variants corresponding to 10144 individual cases, and 1244 unique F9 
variants corresponding to 4713 individual cases. In Tables 43 and 44, genetic variants are classified by 
their predicted effect from the observed DNA nucleotide sequence evidence (i.e. missense, in-frame-in-
del, frameshift-indel, splicing defect, nonsense, large deletion). F8 and F9 variants, respectively, listed in 
Tables 43 and 44 represent those hemophilia causative variants with significant frequencies worldwide in 
contrast with those prevalent variants found in particular populations typically associated with non-severe 
phenotypes (e.g. F8 exon 13 duplication prevalent in the Italian population of mild hemophilia A (Acquila 
et al, 2004).

Other Phenotypes Associated with the F8 Gene 

Thrombophilia 13 (X-linked, due to FVIII defect): Shen et al (2013) evaluated FVIII:C activity levels and F8 
gene copy number in patients with venous thromboembolism (VTE) versus healthy controls. VTE patients 
showed significantly higher FVIII:C and greater number of copies of the F8 gene. Simioni et al (2021) 
reported two Italian families with thrombophilia 13 and identified a partial F8 tandem duplication, which 
is consistent with X-linked dominant inheritance pattern as hemizygous male patients are more severely 
affected than female carriers.

Other Phenotypes Associated with the F9 Gene 

Thrombophilia 8 (due to FIX defect) is an X-linked recessive inherited phenotype associated with early 
onset VTE caused by a F9 missense defect, R338L or variant Padua, reported by Simioni et al (2009). FIX-
Padua was reported to enhance the fibrinolytic resistance of plasma clots (Ammollo et al, 2014).
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Deep Vein Thrombosis (DVT) Protection:

The common polymorphic variant FIX-Mälmo (minor allele frequency of 0.32), p.(Thr148Ala) due to a G>A 
single nucleotide substitution (SNV), associates with a DVT risk protection with odds ratios (OR) of 0.8 in 
male patients and 0.89 in female patients (Bezemer et al, 2008). However, the molecular mechanisms for 
DVT protection conferred by the FIX-Mälmo polymorphism remained unknown. 

Warfarin is a widely prescribed anticoagulant for the prevention of thromboembolic events in ‘at risk’ 
patients. Warfarin sensitivity (X-linked, due to FIX variants) refers to a bleeding phenotype complication 
during anticoagulation therapy with vitamin K antagonists. Pezeshkpoor et al (2018) reported an association 
between F9 missense variants affecting the pro-peptide, such as p.(Ala37Thr) and p.(Ala37Val), and warfarin 
sensitivity characterized by a disproportionate reduction of FIX:C levels during anticoagulation therapy.

The causal relationship between a given genetic variant (e.g. F8 Inv22) and a particular phenotype (e.g. 
severe hemophilia A in a hemizygous patient) can be modified in rare cases by the involvement of a genetic 
mosaicism (GM), which is defined as a coexistence of at least two genetically different clones in an indi-
vidual (e.g. Inv22-positive and -negative cells). A GM may involve partially or totally, some or all organs/
tissues from an affected individual, resulting for example, in milder phenotypes if it affects somatic cells 
(e.g. hepatic endothelium-derived FVIII/FIX producing cells) and the gene variant heritability if it affects 
germ cells (e.g. a germinal mosaic male hemophilia patient may be the father of non-carrier daughters) 
(Abelleyro et al, 2018). 

As historical paradigms of X-linked recessive disorders, hemophilia A (OMIM #306700) and hemophilia B 
(OMIM #306900) are typically expressed in hemizygous male patients (46,XY) and heterozygous females 
(46,XX) are usually asymptomatic. According to a consensual point of view among hematologists, a new 
classification of female hemophilia considers the factor coagulation activity levels, indicating severe disease 
when <1 IU/dl, moderate 1-5 IU/dl, and mild hemophilia 5-40 IU/dl; and when factor levels are >40 IU/
dl, individuals are classified as symptomatic and non-symptomatic carriers (van Galen et al, 2021). The 
molecular basis of female hemophilia involves the impaired expression or silencing of F8 or F9 alleles 
mediated by the phenomenon of X-chromosome inactivation (XCI), which silences the gene expression 
in cis from one X in each cell to compensate doses with males. XCI takes place early in embryogenesis 
normally at random in each cell and this state is inherited clonally in the adult life of women. A homozygous 
female carrier and a compound heterozygote are expected to express hemophilia as well as heterozygous 
carriers with skewed XCI preferentially silencing the normal allele (Radic et al, 2015). Moreover, Garagiola 
et al (2021) proved a significant association between FVIII/FIX clotting activity levels and the pattern of 
XCI measured in peripheral blood leukocytes from heterozygous hemophilia A carriers with ≤50 IU/dl. 

Spectrum of Practical Approaches Applied in Genetic Testing: Depending on the availability of resources 
and expertise, there are a variety of techniques that may be employed for the investigation of genetic 
variants associated with hemophilia A and hemophilia B. This chapter provides examples of these prac-
tical approaches and references, where available. A number of different techniques are available for the 
investigation of the F8 intron 22 inversion, including Southern blot, long range polymerase chain reaction 
(PCR), and inverse-shifting PCR (Lakich et al, 1993; Liu et al, 1998; Bagnall et al, 2006; Rossetti et al, 2008; 
Abelleyro et al, 2016; Ding et al, 2016; Hudecova et al, 2017; Pan et al, 2014; Kumar et al, 2015; Edison et 
al, 2016). The F8 intron 1 inversion can be detected by techniques such as double PCR or inverse shifting 
PCR (Bagnall et al, 2002; Rossetti et al, 2008). Analysis of SNVs in F8 and F9 can be performed by a range 
of techniques, including PCR and Sanger sequencing, or high throughput sequencing technologies, such 
as next generation sequencing (NGS) (Al-Allaf et al, 2019; Li et al, 2014; Lyu et al, 2016; Manderstedt et 
al, 2019; Edison et al, 2016). Where resources are limited, a screening approach prior to Sanger sequenc-
ing could be employed (Salviato et al, 2019), such as heteroduplex analysis using conformation sensitive 
gel electrophoresis (CSGE). For analysis of CNVs in F8 and F9, there are a number of techniques such as 
gap-PCR, multiplex ligation-dependent probe amplification (MLPA), quantitative real-time PCR, and NGS 
(Rossetti et al, 2004; Payne et al, 2012; Costa et al, 2004; Belvini et al, 2017; Kinkle et al, 2017; You et al, 
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2013; Wu et al, 2014; Fernandez-Lopez et al, 2007; Tizzano et al, 2005; Johnsen et al, 2017). In cases of 
hemophilia A and hemophilia B where an underlying genetic variant is not found in the essential regions 
of the F8 or F9 genes using the techniques described above, analysis of deep intronic regions for poten-
tial splicing defects may be available by targeted massive parallel sequencing (MPS) or whole genome 
sequencing (WGS) (Jourdy et al, 2018; Jourdy et al, 2020; Bach et al, 2015; Inaba et al, 2017; Castaman 
et al, (2011; Chang et al, 2019). Linkage analysis may also be considered for family studies where there is 
no identifiable F8 or F9 variant (Sun et al, 2015). The investigation of individuals with atypical phenotypes 
which may be due to complex genomic rearrangements may be by cytogenetic microarray analysis (Jourdy 
et al, 2016; Jourdy et al, 2017; Janczar et al, 2016; Lannoy et al, 2018). Analysis of X-chromosome inacti-
vation may be performed by a number of techniques such as methylation specific restriction enzyme, PCR 
and fragment analysis, or other quantitative techniques (Nisen et al, 1989; Coleman et al, 1993; Johansson 
et al, 2023; Machado et al, 2014).

Standardized Nomenclature and Pathogenic Potential of Variants: Accuracy in the univocal descrip-
tion of genetic variants is essential for research and clinical care. To address this requirement, the Human 
Genome Variation Society (HGVS) Variant Nomenclature Committee (HVNC) under the auspice of the 
Human Genome Organization (HUGO) developed a set of recommendations. These include that genetic 
variants should be described at the most basic level, the DNA level, and descriptions at the RNA and/or 
protein level, in general predicted from the DNA evidence, may be given in addition (https://hgvs-no-
menclature.org/stable/) (den Dunnen et al, 2016). HGVS nomenclature recommends a specific numbering 
for gene positions indicating codon +1 coding for the first residue (Met) of the primary polypeptide and 
nucleotide +1 for the A of the initiation codon AUG. In some former hemophilia publications, legacy 
numbering of codon/amino-acid +1 refers to that coding for the first amino-acid of the mature protein 
(i.e. in HGVS numbering, FVIII codon 20 and FIX codon 47). To adjust and normalize the nomenclature 
of variants according to HGVS, the Mutalyzer website offers efficient algorithms to check and verify their 
correct description from HGVS recommendations (https://mutalyzer.nl/) (Lefter et al, 2021). All detected 
variants should be classified according to their potential to cause the observed phenotype according to 
the guidelines produced by the American College of Medical Genetics and Genomics/Association for 
Molecular Pathology (ACMG/AMP) (Richards et al, 2015). ACMG recommendations can be applied to 
conventional or next-generation sequencing-based genetic tests used in clinical laboratories and comprise 
a five-tier system of classification for variants relevant to Mendelian disorders: (1) pathogenic, (2) likely 
pathogenic, (3) uncertain significance, (4) likely benign, and (5) benign. To achieve this categorization, the 
ACMG/AMP recommends a thorough analysis of (a) population data, (b) computational data, (c) functional 
data, and (d) segregation data. 

For example, the analysis of F8 and F9 variants involve: 

(a) The study of the genotyped variant in the general population and its frequency in hemizygous, het-
erozygous individuals, etc. consulting gnomAD (https://gnomad.broadinstitute.org/), ClinVar (https://
www.ncbi.nlm.nih.gov/clinvar/), and in the F8/HA and F9/HB gene specific databases, such as EAHAD 
and CHAMP (referenced above). 

(b) The application of in silico bioinformatic tools to analyze missense changes by predicting eventual 
structural or functional changes using, for example, PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), 
MutationTaster (https://www.mutationtaster.org/) and Varsome (https://varsome.com/) among others; or 
to evaluate eventual splicing defects, such as NNSplice (https://www.fruitfly.org/seq_tools/splice.html), 
NetGene2 (https://services.healthtech.dtu.dk/services/NetGene2-2.42/) and ESEFinder for searching dif-
ferences in exonic splicing enhancer sequences (esefinder.ahc.umn.edu); and many other computational 
tools to estimate the impact of variants on the promoter, 5’- or 3’-UTR, etc.

(c) Experimental data obtained from in vitro and in vivo functional studies of the mutated versus normal 
version to be tested, or a part of it, provide significant information to establish the impact of a genetic 
variant. 
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(d) Segregation data associated with an X-linked recessive mode of inheritance and co-segregation with 
hemophilia in multiple affected family members is indicative of pathogenicity. Taking into account this 
analysis, the ACMG/AMP indicate the criteria for classifying pathogenic variants scoring the evidence as 
very strong (PVS), strong (PS), moderate (PM) and supporting (PP); and the criteria for classifying benign 
or neutral impact of variants scoring the evidence as stand-alone (BA), strong (BS) and supporting (BP). 
Final classification in a category to estimate pathogenicity (1-5) results from the combination of P_ and 
B_ evidence scores (Richards et al, 2015).

Interpretive Reports: Interpretive reports should be clear and concise, and address the diagnosis of the 
person under investigation. Beyond its main focus stating its overall molecular conclusion in answering 
the genetic question, an interpretive report should include sufficient details to allow identification of the 
variant in other laboratories (i.e. indicate the practical approaches used, limitations of the techniques, 
genomic reference sequence used, and the classification of pathogenicity according to the ACMG guide-
lines, including the evidence applied for classification and references; ACGS reporting guidelines, 2020; 
Deans et al, 2022; Claustres et al, 2014; Gomez et al, 2019). Interpretive reports should include informa-
tion explaining the actual extent of the molecular diagnosis in plain language with clear indication of, for 
example, specific risks for developing specific phenotypes in the family. 

Quality assurance: In genetic testing, quality assurance covers all aspects of the diagnostic process, from 
nucleic acid extraction and analytical procedures, through to the classification and description of the vari-
ants detected and the production of an interpretive report. Internal quality control (IQC) of genetic tests 
should be routinely performed to ensure the validity of the results produced. Formal EQA schemes are 
available to ensure that diagnostic process and reporting procedures are in agreement with other labo-
ratories (e.g. Genomics Quality Assessment [GenQA], and specifically for hemophilia genetic assessment 
by the U.K. National External Quality Assessment Service [UK NEQAS] for Blood Coagulation). Genetics 
laboratories should undergo periodic accreditation, if available, against internationally agreed standards, 
by an approved body. This ensures high quality provision of the genetic diagnostic service.
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